One potential treatment for damaged cardiac tissue post myocardial infarction is the transplantation of autologous bone marrow-derived mesenchymal stem cells (MSCs) to stimulate angiogenesis, resulting in reperfusion of ischemic tissue that enables subsequent tissue regeneration. An inherent challenge for this approach is patient age, and thus cell donor age, which may result in decreased number and functionality of available stem cells. The objective of this proposal is to determine the effect of donor age on M8Cdependent angiogenesis for ischemic cardiac tissue. Donor ages of MSCs will be categorized as 30's, 40's, 50's, and 60's. The hypothesis is that increased donor age inhibits MSC-dependent angiogenesis within the challenging cellular and mechanical environment of the myocardium. To test this hypothesis, this proposal will utilize a differential approach of tissue engineering systems that progressively increases the complexity of the in vitro models to include, separately and in combination, heterotypic human cell phenotypes, soluble factor communication, direct cell-cell contact, 3D environments, and applied cyclic strain.
Specific Aim 1 is to determine the effect of MSC donor age on endothelial cell (EC) processes and smooth muscle cell-like functions for angiogenesis in an indirect co-culture model. The hypothesis is that increased donor age mitigates MSC-dependent increases in EC proliferation, migration, and assembly through decreased secretion of VEGF. Antibody blocking and gene silencing will be used to focus on the mechanisms dependent on VEGF.
Aim 2 is to determine the effect of MSC donor age on vessel-like structure formation within a cardio-relevant mechanical environment using a direct co-culture model. The hypothesis is that increased donor age mitigates MSC-dependent vessel stabilization and formation through decreased interaction with ECs via the notch signaling pathway. We will utilize 2- and 3-dimensional direct co-culture models and applied cyclic strain to assess the length, diameter, complexity, and stability of vessels formed. Gene silencing will be used to focus on the JAGGED1-N0TCH3 interactions between ECs and MSCs during direct cell-cell communication as the mechanism of vessel stabilization.

Public Health Relevance

An inherent challenge in the use of autologous adult stem cell sources for myocardial infarction is a potential decrease in number or functional capacity of the available stem cells as a function of age. This proposal investigates the dependency of donor age on mesenchymal stem cell-dependent angiogenic processes using a differential approach that progressively increases the complexity of the in vitro model systems.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Exploratory Grants (P20)
Project #
Application #
Study Section
Special Emphasis Panel (ZRR1-RI-B)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Tulane University
New Orleans
United States
Zip Code
Sweat, Richard S; Sloas, David C; Murfee, Walter L (2014) VEGF-C induces lymphangiogenesis and angiogenesis in the rat mesentery culture model. Microcirculation 21:532-40
Yoshida, Tadashi; Friehs, Ingeborg; Mummidi, Srinivas et al. (2014) Pressure overload induces IL-18 and IL-18R expression, but markedly suppresses IL-18BP expression in a rabbit model. IL-18 potentiates TNF-?-induced cardiomyocyte death. J Mol Cell Cardiol 75:141-51
Yoshida, Tadashi; Huq, Tashfin S; Delafontaine, Patrice (2014) Angiotensin type 2 receptor signaling in satellite cells potentiates skeletal muscle regeneration. J Biol Chem 289:26239-48
Kim, Sangkyu; Welsh, David A; Ravussin, Eric et al. (2014) An elevation of resting metabolic rate with declining health in nonagenarians may be associated with decreased muscle mass and function in women and men, respectively. J Gerontol A Biol Sci Med Sci 69:650-6
Lynch, Kristen M; Ahsan, Tabassum (2014) Correlating the effects of bone morphogenic protein to secreted soluble factors from fibroblasts and mesenchymal stem cells in regulating regenerative processes in vitro. Tissue Eng Part A 20:3122-9
Luo, Fayong; Zhuang, Yan; Sides, Mark D et al. (2014) Arsenic trioxide inhibits transforming growth factor-?1-induced fibroblast to myofibroblast differentiation in vitro and bleomycin induced lung fibrosis in vivo. Respir Res 15:51
Stapor, Peter C; Sweat, Richard S; Dashti, Derek C et al. (2014) Pericyte dynamics during angiogenesis: new insights from new identities. J Vasc Res 51:163-74
Zsombok, Andrea (2013) Vanilloid receptors--do they have a role in whole body metabolism? Evidence from TRPV1. J Diabetes Complications 27:287-92
Jiang, Yanyan; Gao, Hong; Krantz, Amanda M et al. (2013) Reduced GABAergic inhibition of kidney-related PVN neurons in streptozotocin-treated type 1 diabetic mouse. J Neurophysiol 110:2192-202
Stapor, Peter C; Azimi, Mohammad S; Ahsan, Tabassum et al. (2013) An angiogenesis model for investigating multicellular interactions across intact microvascular networks. Am J Physiol Heart Circ Physiol 304:H235-45

Showing the most recent 10 out of 13 publications