One potential treatment for damaged cardiac tissue post myocardial infarction is the transplantation of autologous bone marrow-derived mesenchymal stem cells (MSCs) to stimulate angiogenesis, resulting in reperfusion of ischemic tissue that enables subsequent tissue regeneration. An inherent challenge for this approach is patient age, and thus cell donor age, which may result in decreased number and functionality of available stem cells. The objective of this proposal is to determine the effect of donor age on M8Cdependent angiogenesis for ischemic cardiac tissue. Donor ages of MSCs will be categorized as 30's, 40's, 50's, and 60's. The hypothesis is that increased donor age inhibits MSC-dependent angiogenesis within the challenging cellular and mechanical environment of the myocardium. To test this hypothesis, this proposal will utilize a differential approach of tissue engineering systems that progressively increases the complexity of the in vitro models to include, separately and in combination, heterotypic human cell phenotypes, soluble factor communication, direct cell-cell contact, 3D environments, and applied cyclic strain.
Specific Aim 1 is to determine the effect of MSC donor age on endothelial cell (EC) processes and smooth muscle cell-like functions for angiogenesis in an indirect co-culture model. The hypothesis is that increased donor age mitigates MSC-dependent increases in EC proliferation, migration, and assembly through decreased secretion of VEGF. Antibody blocking and gene silencing will be used to focus on the mechanisms dependent on VEGF.
Aim 2 is to determine the effect of MSC donor age on vessel-like structure formation within a cardio-relevant mechanical environment using a direct co-culture model. The hypothesis is that increased donor age mitigates MSC-dependent vessel stabilization and formation through decreased interaction with ECs via the notch signaling pathway. We will utilize 2- and 3-dimensional direct co-culture models and applied cyclic strain to assess the length, diameter, complexity, and stability of vessels formed. Gene silencing will be used to focus on the JAGGED1-N0TCH3 interactions between ECs and MSCs during direct cell-cell communication as the mechanism of vessel stabilization.

Public Health Relevance

An inherent challenge in the use of autologous adult stem cell sources for myocardial infarction is a potential decrease in number or functional capacity of the available stem cells as a function of age. This proposal investigates the dependency of donor age on mesenchymal stem cell-dependent angiogenic processes using a differential approach that progressively increases the complexity of the in vitro model systems.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Exploratory Grants (P20)
Project #
5P20GM103629-03
Application #
8663294
Study Section
Special Emphasis Panel (ZRR1)
Project Start
Project End
Budget Start
2014-06-01
Budget End
2015-05-31
Support Year
3
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Tulane University
Department
Type
DUNS #
City
New Orleans
State
LA
Country
United States
Zip Code
70118
Jazwinski, S Michal; Jiang, James C; Kim, Sangkyu (2018) Adaptation to metabolic dysfunction during aging: Making the best of a bad situation. Exp Gerontol 107:87-90
Zhang, Qian; Chen, Yujue; Yang, Lu et al. (2018) Multitasking Ska in Chromosome Segregation: Its Distinct Pools Might Specify Various Functions. Bioessays 40:
Kim, Sangkyu; Jazwinski, S Michal (2018) The Gut Microbiota and Healthy Aging: A Mini-Review. Gerontology 64:513-520
Boraas, Liana C; Pineda, Emma T; Ahsan, Tabassum (2018) Actin and myosin II modulate differentiation of pluripotent stem cells. PLoS One 13:e0195588
Sure, Venkata N; Sakamuri, Siva S V P; Sperling, Jared A et al. (2018) A novel high-throughput assay for respiration in isolated brain microvessels reveals impaired mitochondrial function in the aged mice. Geroscience 40:365-375
Akintunde, Akinjide R; Miller, Kristin S (2018) Evaluation of microstructurally motivated constitutive models to describe age-dependent tendon healing. Biomech Model Mechanobiol 17:793-814
Kim, Sangkyu; Wyckoff, Jennifer; Morris, Anne-T et al. (2018) DNA methylation associated with healthy aging of elderly twins. Geroscience 40:469-484
Popescu, Ion R; Le, Kathy Q; Palenzuela, RocĂ­o et al. (2017) Marked bias towards spontaneous synaptic inhibition distinguishes non-adapting from adapting layer 5 pyramidal neurons in the barrel cortex. Sci Rep 7:14959
Robison, Kathryn M; Conway, Cassandra K; Desrosiers, Laurephile et al. (2017) Biaxial Mechanical Assessment of the Murine Vaginal Wall Using Extension-Inflation Testing. J Biomech Eng 139:
Motherwell, Jessica M; Azimi, Mohammad S; Spicer, Kristine et al. (2017) Evaluation of Arteriolar Smooth Muscle Cell Function in an Ex Vivo Microvascular Network Model. Sci Rep 7:2195

Showing the most recent 10 out of 76 publications