One potential treatment for damaged cardiac tissue post myocardial infarction is the transplantation of autologous bone marrow-derived mesenchymal stem cells (MSCs) to stimulate angiogenesis, resulting in reperfusion of ischemic tissue that enables subsequent tissue regeneration. An inherent challenge for this approach is patient age, and thus cell donor age, which may result in decreased number and functionality of available stem cells. The objective of this proposal is to determine the effect of donor age on M8Cdependent angiogenesis for ischemic cardiac tissue. Donor ages of MSCs will be categorized as 30's, 40's, 50's, and 60's. The hypothesis is that increased donor age inhibits MSC-dependent angiogenesis within the challenging cellular and mechanical environment of the myocardium. To test this hypothesis, this proposal will utilize a differential approach of tissue engineering systems that progressively increases the complexity of the in vitro models to include, separately and in combination, heterotypic human cell phenotypes, soluble factor communication, direct cell-cell contact, 3D environments, and applied cyclic strain.
Specific Aim 1 is to determine the effect of MSC donor age on endothelial cell (EC) processes and smooth muscle cell-like functions for angiogenesis in an indirect co-culture model. The hypothesis is that increased donor age mitigates MSC-dependent increases in EC proliferation, migration, and assembly through decreased secretion of VEGF. Antibody blocking and gene silencing will be used to focus on the mechanisms dependent on VEGF.
Aim 2 is to determine the effect of MSC donor age on vessel-like structure formation within a cardio-relevant mechanical environment using a direct co-culture model. The hypothesis is that increased donor age mitigates MSC-dependent vessel stabilization and formation through decreased interaction with ECs via the notch signaling pathway. We will utilize 2- and 3-dimensional direct co-culture models and applied cyclic strain to assess the length, diameter, complexity, and stability of vessels formed. Gene silencing will be used to focus on the JAGGED1-N0TCH3 interactions between ECs and MSCs during direct cell-cell communication as the mechanism of vessel stabilization.

Public Health Relevance

An inherent challenge in the use of autologous adult stem cell sources for myocardial infarction is a potential decrease in number or functional capacity of the available stem cells as a function of age. This proposal investigates the dependency of donor age on mesenchymal stem cell-dependent angiogenic processes using a differential approach that progressively increases the complexity of the in vitro model systems.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Exploratory Grants (P20)
Project #
Application #
Study Section
Special Emphasis Panel (ZRR1)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Tulane University
New Orleans
United States
Zip Code
Guo, Weichao; Saito, Shigeki; Sanchez, Cecilia G et al. (2017) TGF-?1 stimulates HDAC4 nucleus-to-cytoplasm translocation and NADPH oxidase 4-derived reactive oxygen species in normal human lung fibroblasts. Am J Physiol Lung Cell Mol Physiol 312:L936-L944
Liao, Wenjuan; Liu, Hongbing; Zhang, Yiwei et al. (2017) Ccdc3: A New P63 Target Involved in Regulation Of Liver Lipid Metabolism. Sci Rep 7:9020
Jazwinski, S Michal; Kim, Sangkyu (2017) Metabolic and Genetic Markers of Biological Age. Front Genet 8:64
Palozola, Katherine C; Donahue, Greg; Liu, Hong et al. (2017) Mitotic transcription and waves of gene reactivation during mitotic exit. Science 358:119-122
Jazwinski, S Michal; Jiang, James C; Kim, Sangkyu (2017) Adaptation to metabolic dysfunction during aging: Making the best of a bad situation. Exp Gerontol :
Motherwell, Jessica M; Azimi, Mohammad S; Spicer, Kristine et al. (2017) Evaluation of Arteriolar Smooth Muscle Cell Function in an Ex Vivo Microvascular Network Model. Sci Rep 7:2195
Sweat, Richard S; Sloas, David C; Stewart, Scott A et al. (2017) Aging is associated with impaired angiogenesis, but normal microvascular network structure, in the rat mesentery. Am J Physiol Heart Circ Physiol 312:H275-H284
Kim, Sangkyu; Myers, Leann; Wyckoff, Jennifer et al. (2017) The frailty index outperforms DNA methylation age and its derivatives as an indicator of biological age. Geroscience 39:83-92
Azimi, Mohammad S; Motherwell, Jessica M; Murfee, Walter L (2017) An Ex Vivo Method for Time-Lapse Imaging of Cultured Rat Mesenteric Microvascular Networks. J Vis Exp :
Molinski, Steven V; Shahani, Vijay M; MacKinnon, Stephen S et al. (2017) Computational proteome-wide screening predicts neurotoxic drug-protein interactome for the investigational analgesic BIA 10-2474. Biochem Biophys Res Commun 483:502-508

Showing the most recent 10 out of 65 publications