The Aim of the Imaging Core is to provide enabling technology in histology and microscopy for all five participants in this Developmental Biology COBRE. The Core will be housed in a 5000 square foot suite in OMRF's new Research Tower. Major pieces of equipment include standard upright and inverted microscopes, a Zeiss LSM-510 META laser scanning confocal microscope, a Hitachi H-7600 transmission electron microscope fitted with an AMT 2Kx2K ES 4.0 digital camera, a Zeiss TIRF microscope, a structured illumination microscope with Colibri LED illumination, and a newly acquired Zeiss LSM-710 multiphoton microscope with a Becker and Hickl FLIM system and full physiological capabilities. Sample preparation equipment includes two automatic tissue processors, a paraffin embedder, four microtomes, cryostats, a tissue trimmer and an automatic coverslipper. Dr. Paul Kincade, an expert in the use of fluorescence microscopy, will be the Director of the Imaging Core and technical assistance and day-to-day management will be provided by Mr. Ben Fowler who has managed the facility for more than a decade. Access to the Imaging Core will be free of charge for all COBRE participants. The research projects of all five Junior Investigators depend on histology and various types of microscopy (fluorescence, confocal, electron, and multiphoton), so this Core will be heavily used and is essential for the success of this COBRE.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Exploratory Grants (P20)
Project #
1P20GM103636-01A1
Application #
8466509
Study Section
Special Emphasis Panel (ZGM1-TWD-B (CB))
Project Start
Project End
Budget Start
2013-03-01
Budget End
2014-02-28
Support Year
1
Fiscal Year
2013
Total Cost
$94,080
Indirect Cost
$38,080
Name
Oklahoma Medical Research Foundation
Department
Type
DUNS #
077333797
City
Oklahoma City
State
OK
Country
United States
Zip Code
73104
Duan, Hongliang; Arora, Daleep; Li, Yu et al. (2016) Identification of 1,2,3-triazole derivatives that protect pancreatic β cells against endoplasmic reticulum stress-mediated dysfunction and death through the inhibition of C/EBP-homologous protein expression. Bioorg Med Chem 24:2621-30
Borgogno, María V; Monti, Mariela R; Zhao, Weixing et al. (2016) Tolerance of DNA Mismatches in Dmc1 Recombinase-mediated DNA Strand Exchange. J Biol Chem 291:4928-38
Tsou, Pei-Suen; Wren, Jonathan D; Amin, M Asif et al. (2016) Histone Deacetylase 5 Is Overexpressed in Scleroderma Endothelial Cells and Impairs Angiogenesis via Repression of Proangiogenic Factors. Arthritis Rheumatol 68:2975-2985
Griffin, Timothy M; Humphries, Kenneth M; Kinter, Michael et al. (2016) Nutrient sensing and utilization: Getting to the heart of metabolic flexibility. Biochimie 124:74-83
Duan, Hongliang; Lee, Jae Wook; Moon, Sung Won et al. (2016) Discovery, Synthesis, and Evaluation of 2,4-Diaminoquinazolines as a Novel Class of Pancreatic β-Cell-Protective Agents against Endoplasmic Reticulum (ER) Stress. J Med Chem 59:7783-800
Siefert, Joseph C; Clowdus, Emily A; Sansam, Christopher L (2015) Cell cycle control in the early embryonic development of aquatic animal species. Comp Biochem Physiol C Toxicol Pharmacol 178:8-15
Larabee, Chelsea M; Georgescu, Constantin; Wren, Jonathan D et al. (2015) Expression profiling of the ubiquitin conjugating enzyme UbcM2 in murine brain reveals modest age-dependent decreases in specific neurons. BMC Neurosci 16:76
Dozmorov, Mikhail G; Adrianto, Indra; Giles, Cory B et al. (2015) Detrimental effects of duplicate reads and low complexity regions on RNA- and ChIP-seq data. BMC Bioinformatics 16 Suppl 13:S10
Pezza, Roberto J (2015) Mechanisms of chromosome segregation in meiosis--new views on the old problem of aneuploidy. FEBS J 282:2424-5
Lee, Chih-Ying; Horn, Henning F; Stewart, Colin L et al. (2015) Mechanism and regulation of rapid telomere prophase movements in mouse meiotic chromosomes. Cell Rep 11:551-63

Showing the most recent 10 out of 33 publications