Next generation sequencing is now a central tool in the analysis of signaling pathways important in development and disease. The Genome Sequencing Core (GSC) is aimed at providing researchers at the University of Kansas in Lawrence with next-generation sequencing technologies as well as expertise in experimental design and analysis of sequence data. Projects in the GSC will include whole genome assembly, genome re-sequencing for identification of mutations important in development and disease, transcriptome analysis (RNA seq), and identification of transcription factor interaction sites using chromatin immunoprecipitation combined with DNA sequencing (ChIP seq). The GSC will house a state-of-the-art lllumina Hiseq 2000 sequencer with dedicated processor and storage space to run the instrument. This core facility will enhance the genomics infrastructure already at KU, in the KU Genomics Center and the KU DNA Sequencing Facility, which provides standard, first generation sequencing. Together, the three cores allow for a thorough, integrated dissection of disease pathways using novel fluorescence probes to define a cellular process, to find mutations affecting that cellular process, and to define genes involved in the cellular process. The novel approach of the MADP is to combine the enabling technologies of fluorescent probe synthetic chemistry and next generation sequencing to set up a pipeline for target discovery in disease pathways. Next generation sequencing is an enabling technology in that it has the power to allow investigators from many different disciplines to ask new questions in their research areas of interest. The GSC will enable genomics research at the University of Kansas by eliminating the barriers of cost and communication involved with using off-campus facilities. Interest in next generation sequencing at the University of Kansas in Lawrence is high, and includes investigators in the Pharmacy School, the Department of Molecular Biosciences, and the Department of Ecology and Evolutionary Biology. Use ofthe GSC will be by Projects in this Molecular Analysis of Disease Pathways COBRE, as well as by researchers across the campus and in many different disciplines.

Public Health Relevance

Next-generation sequencing technologies have revolutionized genetic and molecular analyses by allowing the generation of tens of millions of sequencing reads and billions of sequenced bases in a relatively short time and for a relatively low cost. The uses are many and profound, such as genome re-sequencing to identify new mutations or lesions important in diseases such as cancer;transcriptome analysis to understand global gene regulation in normal and pathogenic states;and global analysis of transcription factor interactions with regulatory elements across the entire genome. Next-generation sequencing is becoming a central tool in almost every aspect of genetic and molecular research, and the Genome Sequencing Core will provide a strong base for next-generation sequencing at the University of Kansas and will serve as a base for continued growth in this area at the university.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Exploratory Grants (P20)
Project #
Application #
Study Section
Special Emphasis Panel (ZRR1-RI-B)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Kansas Lawrence
United States
Zip Code
Zhao, Zheng; Yang, Yang; Zeng, Yong et al. (2016) A microfluidic ExoSearch chip for multiplexed exosome detection towards blood-based ovarian cancer diagnosis. Lab Chip 16:489-96
Grismer, Jesse L; Schulte 2nd, James A; Alexander, Alana et al. (2016) The Eurasian invasion: phylogenomic data reveal multiple Southeast Asian origins for Indian Dragon Lizards. BMC Evol Biol 16:43
Chakraborty, Aishik; Hui, Erica; Waring, Alan J et al. (2016) Combined effect of synthetic protein, Mini-B, and cholesterol on a model lung surfactant mixture at the air-water interface. Biochim Biophys Acta 1858:904-12
Huang, Wei; Beer, Rebecca L; Delaspre, Fabien et al. (2016) Sox9b is a mediator of retinoic acid signaling restricting endocrine progenitor differentiation. Dev Biol 418:28-39
Mosher, Laura J; Frau, Roberto; Pardu, Alessandra et al. (2016) Selective activation of D1 dopamine receptors impairs sensorimotor gating in Long-Evans rats. Br J Pharmacol 173:2122-34
Miller, Danny E; Smith, Clarissa B; Kazemi, Nazanin Yeganeh et al. (2016) Whole-Genome Analysis of Individual Meiotic Events in Drosophila melanogaster Reveals That Noncrossover Gene Conversions Are Insensitive to Interference and the Centromere Effect. Genetics 203:159-71
McGill, Jodi L; Nair, Arathy D S; Cheng, Chuanmin et al. (2016) Vaccination with an Attenuated Mutant of Ehrlichia chaffeensis Induces Pathogen-Specific CD4+ T Cell Immunity and Protection from Tick-Transmitted Wild-Type Challenge in the Canine Host. PLoS One 11:e0148229
Hasan, Anwarul; Waters, Renae; Roula, Boustany et al. (2016) Engineered Biomaterials to Enhance Stem Cell-Based Cardiac Tissue Engineering and Therapy. Macromol Biosci 16:958-77
McGill, Jodi L; Rusk, Rachel A; Guerra-Maupome, Mariana et al. (2016) Bovine Gamma Delta T Cells Contribute to Exacerbated IL-17 Production in Response to Co-Infection with Bovine RSV and Mannheimia haemolytica. PLoS One 11:e0151083
Park, Hyewon; Galbraith, Richard; Turner, Thaddeus et al. (2016) Loss of Ewing sarcoma EWS allele promotes tumorigenesis by inducing chromosomal instability in zebrafish. Sci Rep 6:32297

Showing the most recent 10 out of 75 publications