Over the past twenty years there has been a tremendous growth in the application of microfabrication technologies that are used to produce computer chips towards the development of microfluidic devices that can be used to study biological systems. Microchip based fluidic systems have been used to analyze the contents of single cells, measure the effect of channel size on ATP release from red blood cells as well as the study of the behavior and growth of C. elegans. The Microfabrication and Microfluidics Core (MMC) will provide the resources and personnel for the production of microfabricated devices that can be used by project investigators for their studies. It will also assist in the development of bioanalytical assays for small molecules and proteins. For the projects described in this COBRE proposal, the initial emphasis will be on the development of devices for trapping and imaging C. elegans, and manipulating zebrafish embryos. The devices developed in this core laboratory will make it possible for project investigators to explore the effect of genetic modifications of model organisms by fluorescence imaging in conjunction with the Genetics and Model Organism Core and the Synthetic Molecular Probes for in vivo Imaging core. In addition, microfluidics systems for maintaining tissue slices and cells will be developed and used for measurement of the release of neurotransmitters and other biomolecules. Lastly, basic fabrication methods will be available for the production of micron and submicron particles, channels and reservoirs for biophysical studies related to the molecular analysis of disease pathways.

Public Health Relevance

The Microfabrication and Microfluidics Core will develop lab-on-a-chip devices that can be used to facilitate investigations of the biochemistry pathways of diseases including neurological disorders, cardiovascular disease, cancer and pulmonary disorders.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Exploratory Grants (P20)
Project #
Application #
Study Section
Special Emphasis Panel (ZRR1-RI-B)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Kansas Lawrence
United States
Zip Code
Frau, Roberto; Bini, Valentina; Pillolla, Giuliano et al. (2014) Positive allosteric modulation of GABAB receptors ameliorates sensorimotor gating in rodent models. CNS Neurosci Ther 20:679-84
Sundararajan, Lakshmi; Norris, Megan L; Schöneich, Sebastian et al. (2014) The fat-like cadherin CDH-4 acts cell-non-autonomously in anterior-posterior neuroblast migration. Dev Biol 392:141-52
Hymel, David; Woydziak, Zachary R; Peterson, Blake R (2014) Detection of protein-protein interactions by proximity-driven S(N)Ar reactions of lysine-linked fluorophores. J Am Chem Soc 136:5241-4
Blumenstiel, Justin P (2014) Whole genome sequencing in Drosophila virilis identifies Polyphemus, a recently activated Tc1-like transposon with a possible role in hybrid dysgenesis. Mob DNA 5:6
Frau, Roberto; Bini, Valentina; Pes, Romina et al. (2014) Inhibition of 17*-hydroxylase/C17,20 lyase reduces gating deficits consequent to dopaminergic activation. Psychoneuroendocrinology 39:204-13
Woydziak, Zachary R; Fu, Liqiang; Peterson, Blake R (2014) Efficient and Scalable Synthesis of 4-Carboxy-Pennsylvania Green Methyl Ester: A Hydrophobic Building Block for Fluorescent Molecular Probes. Synthesis (Stuttg) 46:158-164
Sun, Meng; Kaplan, Sam V; Gehringer, Rachel C et al. (2014) Localized drug application and sub-second voltammetric dopamine release measurements in a brain slice perfusion device. Anal Chem 86:4151-6
Gunasekara, Dulan B; Siegel, Joseph M; Caruso, Giuseppe et al. (2014) Microchip electrophoresis with amperometric detection method for profiling cellular nitrosative stress markers. Analyst 139:3265-73
Blumenstiel, Justin P; Chen, Xi; He, Miaomiao et al. (2014) An age-of-allele test of neutrality for transposable element insertions. Genetics 196:523-38
Wickersheim, Michelle L; Blumenstiel, Justin P (2013) Terminator oligo blocking efficiently eliminates rRNA from Drosophila small RNA sequencing libraries. Biotechniques 55:269-72

Showing the most recent 10 out of 15 publications