The primary goal of this research is to determine, for the first time, the physiologically optimal surface viscosity of the lung surfactant using an active microrheology technique unique to our lab. We hypothesize that there exists an optimal surface viscosity in an effective lung surfactant that provides both rapid adsorption to the air-water interface and ultra-low surface tensions. Our goal is to determine how best to achieve this optimum by controlling the cholesterol fraction of a synthetic replacement lung surfactant. Three orders of magnitude increased sensitivity of our microrheology technique as compared to macroscopic rheometers allows precise monitoring of changes in the molecular organization of the lung surfactant film in the presence of cholesterol, enabling accurate measurements of surface viscosity of surfactant films. Ultimately, determining the optimal cholesterol concentration will enable a better design of synthetic surfactants to treat Neonatal Respiratory Distress Syndrome (NRDS) and may give insights into the causes of surfactant inactivation in Adult Respiratory Distress Syndrome (ARDS). We hypothesize that small fractions (1-5 wt. %) of cholesterol reduce the crystalline ordering of saturated lipids in lung surfactant monolayers, leading to a reduction in the shear viscosity, which enhances the surfactant's ability to flow and cover the alveolar interface. We also hypothesize that excess cholesterol ( >10 wt %) decreases the effectiveness of lung surfactants in ARDS by increasing the minimum surface tension of the interfacial film. This inability to reach ultra-low surface tensions is hypothesized to be a consequence of significantly reduced interfacial energy of the film (line tension). Low interfacial film energy can influence the mechanical cohesion in the surfactant film and lead to the failure of the film on compression, which ultimately causes the film to become unstable at lower surface tensions. Furthermore, lipid(cholesterol)- protein interactions can also alter these mechanical and structural properties by changing their molecular organization at the interface. By determining the mechanical properties of both model and clinically relevant surfactant film in the presence of physiological and elevated amounts of cholesterol, we can understand how increased cholesterol might lead to surfactant inactivation in ARDS and determine better replacement surfactants for treatment. The mechanical properties thus determined by the active microrheology technique will be correlated with isotherms, fluorescence microscopy, and grazing incidence synchrotron X-ray diffraction to determine how cholesterol alters the molecular packing of lung surfactant lipids, which determines the mechanical properties of monolayers.

Public Health Relevance

A lack of lung surfactant, due to immaturity in premature infants can lead to neonatal respiratory distress syndrome (RDS). It is currently one of the most common lung disorders in premature infants, affecting about 10 of every 100 premature babies in the United States. The ultimate goal of this research is to develop a completely synthetic lung surfactant that should lower costs, decrease contaminations and/or infectious agents and improve efficacy in treatment of NRDS as well as Acute Lung Injury.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Exploratory Grants (P20)
Project #
5P20GM103638-02
Application #
8507248
Study Section
Special Emphasis Panel (ZRR1-RI-B)
Project Start
Project End
Budget Start
2013-07-01
Budget End
2014-06-30
Support Year
2
Fiscal Year
2013
Total Cost
$183,923
Indirect Cost
$60,898
Name
University of Kansas Lawrence
Department
Type
DUNS #
076248616
City
Lawrence
State
KS
Country
United States
Zip Code
66045
Zhao, Zheng; Yang, Yang; Zeng, Yong et al. (2016) A microfluidic ExoSearch chip for multiplexed exosome detection towards blood-based ovarian cancer diagnosis. Lab Chip 16:489-96
Grismer, Jesse L; Schulte 2nd, James A; Alexander, Alana et al. (2016) The Eurasian invasion: phylogenomic data reveal multiple Southeast Asian origins for Indian Dragon Lizards. BMC Evol Biol 16:43
Chakraborty, Aishik; Hui, Erica; Waring, Alan J et al. (2016) Combined effect of synthetic protein, Mini-B, and cholesterol on a model lung surfactant mixture at the air-water interface. Biochim Biophys Acta 1858:904-12
Huang, Wei; Beer, Rebecca L; Delaspre, Fabien et al. (2016) Sox9b is a mediator of retinoic acid signaling restricting endocrine progenitor differentiation. Dev Biol 418:28-39
Mosher, Laura J; Frau, Roberto; Pardu, Alessandra et al. (2016) Selective activation of D1 dopamine receptors impairs sensorimotor gating in Long-Evans rats. Br J Pharmacol 173:2122-34
Miller, Danny E; Smith, Clarissa B; Kazemi, Nazanin Yeganeh et al. (2016) Whole-Genome Analysis of Individual Meiotic Events in Drosophila melanogaster Reveals That Noncrossover Gene Conversions Are Insensitive to Interference and the Centromere Effect. Genetics 203:159-71
McGill, Jodi L; Nair, Arathy D S; Cheng, Chuanmin et al. (2016) Vaccination with an Attenuated Mutant of Ehrlichia chaffeensis Induces Pathogen-Specific CD4+ T Cell Immunity and Protection from Tick-Transmitted Wild-Type Challenge in the Canine Host. PLoS One 11:e0148229
Hasan, Anwarul; Waters, Renae; Roula, Boustany et al. (2016) Engineered Biomaterials to Enhance Stem Cell-Based Cardiac Tissue Engineering and Therapy. Macromol Biosci 16:958-77
McGill, Jodi L; Rusk, Rachel A; Guerra-Maupome, Mariana et al. (2016) Bovine Gamma Delta T Cells Contribute to Exacerbated IL-17 Production in Response to Co-Infection with Bovine RSV and Mannheimia haemolytica. PLoS One 11:e0151083
Park, Hyewon; Galbraith, Richard; Turner, Thaddeus et al. (2016) Loss of Ewing sarcoma EWS allele promotes tumorigenesis by inducing chromosomal instability in zebrafish. Sci Rep 6:32297

Showing the most recent 10 out of 75 publications