The development of new enabling technologies is critical to improving our understanding and treatment of disease. Immunoassays, gene sequencing, and mass spectrometry represent examples of technologies that have revolutionized biomedical research by allowing the identification of biomarkers and disease pathways that could not have been discovered otherwise. We propose here a new COBRE center focused on Molecular Analysis of Disease Pathways. This Center will bring together junior and senior faculty from the physical, biological, and pharmaceutical sciences at the University of Kansas and other academic institutions in Kansas to conduct multidisciplinary research to develop and implement cutting-edge technologies for elucidating the genetic, chemical, and physical mechanisms of biological processes involved in disease. The scientific emphasis ofthe Center will be to create and implement new enabling technologies for identification of therapeutic targets. These enabling methodologies include methods for integrating next generation gene sequencing with genetic manipulation of model organisms, custom-synthesized fluorescent molecular probes for monitoring physiological/pathological processes in model organisms in vivo, and microfluidic systems for manipulation of model organisms and monitoring of biochemical pathways in vivo. A key innovative element of this proposal is the creation of three core facilities that are designed to operate synergistically: imaging of model organisms treated with fluorescent probes developed by one core facility will be facilitated by the use of microfabricated devices developed in a second core facility;screening of mutant organisms such as C. elegans and zebrafish against these probes will be used to discover novel disease-related phenotypes that can be precisely mapped to identify specific targets through the next generation genomic sequencing and related genomic technologies offered by a third core facility. The proposed Center will exploit the strengths of KU and associated universities in the areas of genetics, bioanalytical chemistry, bioengineering, and chemical synthesis and will create new methodologies and approaches that can be used to investigate any pathway involved in disease. These new technologies will be disseminated through research collaborations, publications, and potential commercialization.

Public Health Relevance

The COBRE Center on Molecular Analysis of Disease Pathways will create new tools for biomedical science to better understand the genetic, chemical, and physical basis of a range of diseases, including cancer, neurological disorders, and pulmonary and cardiovascular diseases.

National Institute of Health (NIH)
Exploratory Grants (P20)
Project #
Application #
Study Section
Special Emphasis Panel (ZRR1)
Program Officer
Douthard, Regine
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Kansas Lawrence
Schools of Arts and Sciences
United States
Zip Code
Frau, Roberto; Bini, Valentina; Pillolla, Giuliano et al. (2014) Positive allosteric modulation of GABAB receptors ameliorates sensorimotor gating in rodent models. CNS Neurosci Ther 20:679-84
Sundararajan, Lakshmi; Norris, Megan L; Schöneich, Sebastian et al. (2014) The fat-like cadherin CDH-4 acts cell-non-autonomously in anterior-posterior neuroblast migration. Dev Biol 392:141-52
Hymel, David; Woydziak, Zachary R; Peterson, Blake R (2014) Detection of protein-protein interactions by proximity-driven S(N)Ar reactions of lysine-linked fluorophores. J Am Chem Soc 136:5241-4
Blumenstiel, Justin P (2014) Whole genome sequencing in Drosophila virilis identifies Polyphemus, a recently activated Tc1-like transposon with a possible role in hybrid dysgenesis. Mob DNA 5:6
Frau, Roberto; Bini, Valentina; Pes, Romina et al. (2014) Inhibition of 17*-hydroxylase/C17,20 lyase reduces gating deficits consequent to dopaminergic activation. Psychoneuroendocrinology 39:204-13
Woydziak, Zachary R; Fu, Liqiang; Peterson, Blake R (2014) Efficient and Scalable Synthesis of 4-Carboxy-Pennsylvania Green Methyl Ester: A Hydrophobic Building Block for Fluorescent Molecular Probes. Synthesis (Stuttg) 46:158-164
Sun, Meng; Kaplan, Sam V; Gehringer, Rachel C et al. (2014) Localized drug application and sub-second voltammetric dopamine release measurements in a brain slice perfusion device. Anal Chem 86:4151-6
Gunasekara, Dulan B; Siegel, Joseph M; Caruso, Giuseppe et al. (2014) Microchip electrophoresis with amperometric detection method for profiling cellular nitrosative stress markers. Analyst 139:3265-73
Blumenstiel, Justin P; Chen, Xi; He, Miaomiao et al. (2014) An age-of-allele test of neutrality for transposable element insertions. Genetics 196:523-38
Wickersheim, Michelle L; Blumenstiel, Justin P (2013) Terminator oligo blocking efficiently eliminates rRNA from Drosophila small RNA sequencing libraries. Biotechniques 55:269-72

Showing the most recent 10 out of 15 publications