This proposal addresses the molecular mechanism whereby the Ewing sarcoma fusion protein EWS/FLH leads to chromosome instability and malignant transformation. Ewing sarcoma is the second most common form of bone cancer in children. EWS/FLH is a chimeric fusion protein containing EWS-derived sequences at the amino-terminal region fused to the carboxy-terminal regions of the ETS transcription factor FLU. FLU is essential for hemangioblast differentiation, whereas the in vivo function of EWS is not well understood. In addition to EWS/FLH in Ewing sarcoma, EWS was shown to fused to a number of different genes in other sarcomas. There are a number of unanswered questions regarding the role of EWS/FLH in Ewing sarcoma, including: Which cellular function(s) of EWS/FLH cause malignant transformation? Is expression of EWS/FLH alone sufficient for Ewing sarcoma formation? And why do tumors develop mainly in skeletal elements? To date, there is no animal model for Ewing sarcoma because either the toxicity of the EWS/FLH fusion protein leads to embryonic lethality, or because of failure to exhibit the Ewing sarcoma phenotype. We previously reported that both the knockdown of endogenous EWS, and expression of the EWS/FLH fusion protein in zebrafish embryos and HeLa cells lead to mitotic defects. And the interaction between EWS/FLH and wildtype EWS leads to inhibition of EWS activity. The hypothesis of this proposal is that EWS/FLH interaction with endogenous EWS induces mitotic defects leading to chromosome instability and to malignant transformation. This proposal is designed to address the following aims:
Aim 1 : To determine how expression of EWS/FLH and knockdown of EWS lead to mitotic defects.
Aim 2 : To determine whether knockdown of EWS leads to chromosome instability and Ewing sarcoma in zebrafish.
Aim 3 : To determine whether expression of EWS/FLH leads to chromosome instability and Ewing sarcoma in zebrafish. We have an EWS mutant zebrafish line and have generated transgenic zebrafish lines expressing EWS/FLH conditionally. This approach will allow us to analyze the tissue-specific effects of EWS/FLH expression and EWS knockdown. This knowledge is essential to understand why Ewing sarcoma develops in a tissue-specific (the skeletal elements) manner. We will conduct a detailed, cell-specific analysis of the effects of expression of EWS/FLH or knockdown of EWS, at multiple stages during development. We will continue to develop and analyze a zebrafish model for Ewing sarcoma that fulfills the long-term goals of 1) understanding the transformation process, 2) identifying any secondary mutations that may be required for Ewing sarcoma formation, and 3) screening for chemical compounds that suppress cancer formation. This study may have an impact on public health because it could lead to the discovery of biomarkers of cancer and drugs for patient therapy.

Public Health Relevance

Ewing sarcoma is the second most common form of bone cancer in children. We will establish an Ewing sarcoma model using zebrafish by introducing Ewing sarcoma gene EWS/FLH into zebrafish at the DNA level that can be used to find drugs and therapies for the treatment. This study may have an impact on public health because it could lead to the discovery of diagnostic markers of cancer and drugs for patient therapy.

Agency
National Institute of Health (NIH)
Type
Exploratory Grants (P20)
Project #
5P20GM103638-03
Application #
8691919
Study Section
Special Emphasis Panel (ZRR1)
Project Start
Project End
Budget Start
Budget End
Support Year
3
Fiscal Year
2014
Total Cost
Indirect Cost
Name
University of Kansas Lawrence
Department
Type
DUNS #
City
Lawrence
State
KS
Country
United States
Zip Code
66045
Zhao, Zheng; Yang, Yang; Zeng, Yong et al. (2016) A microfluidic ExoSearch chip for multiplexed exosome detection towards blood-based ovarian cancer diagnosis. Lab Chip 16:489-96
Grismer, Jesse L; Schulte 2nd, James A; Alexander, Alana et al. (2016) The Eurasian invasion: phylogenomic data reveal multiple Southeast Asian origins for Indian Dragon Lizards. BMC Evol Biol 16:43
Chakraborty, Aishik; Hui, Erica; Waring, Alan J et al. (2016) Combined effect of synthetic protein, Mini-B, and cholesterol on a model lung surfactant mixture at the air-water interface. Biochim Biophys Acta 1858:904-12
Huang, Wei; Beer, Rebecca L; Delaspre, Fabien et al. (2016) Sox9b is a mediator of retinoic acid signaling restricting endocrine progenitor differentiation. Dev Biol 418:28-39
Mosher, Laura J; Frau, Roberto; Pardu, Alessandra et al. (2016) Selective activation of D1 dopamine receptors impairs sensorimotor gating in Long-Evans rats. Br J Pharmacol 173:2122-34
Miller, Danny E; Smith, Clarissa B; Kazemi, Nazanin Yeganeh et al. (2016) Whole-Genome Analysis of Individual Meiotic Events in Drosophila melanogaster Reveals That Noncrossover Gene Conversions Are Insensitive to Interference and the Centromere Effect. Genetics 203:159-71
McGill, Jodi L; Nair, Arathy D S; Cheng, Chuanmin et al. (2016) Vaccination with an Attenuated Mutant of Ehrlichia chaffeensis Induces Pathogen-Specific CD4+ T Cell Immunity and Protection from Tick-Transmitted Wild-Type Challenge in the Canine Host. PLoS One 11:e0148229
Hasan, Anwarul; Waters, Renae; Roula, Boustany et al. (2016) Engineered Biomaterials to Enhance Stem Cell-Based Cardiac Tissue Engineering and Therapy. Macromol Biosci 16:958-77
McGill, Jodi L; Rusk, Rachel A; Guerra-Maupome, Mariana et al. (2016) Bovine Gamma Delta T Cells Contribute to Exacerbated IL-17 Production in Response to Co-Infection with Bovine RSV and Mannheimia haemolytica. PLoS One 11:e0151083
Park, Hyewon; Galbraith, Richard; Turner, Thaddeus et al. (2016) Loss of Ewing sarcoma EWS allele promotes tumorigenesis by inducing chromosomal instability in zebrafish. Sci Rep 6:32297

Showing the most recent 10 out of 75 publications