While Alzheimer's disease (AD) represents the leading cause of dementia in the elderly, FDA-approved therapeutics remain inadequate, leading patients to explore complimentary and alternative medicine approaches. Copious epidemiological evidence suggests that plant-derived polyphenols prevent or attenuate AD. These observations are not unexpected as many polyphenols can both inhibit the assembly of aggregated forms of the amyloid-Beta protein, which are associated with disease pathology, and act as antioxidants to counter inflammation, a ubiquitous feature of AD brain. Insight into the mechanism by which polyphenols intervene within AD pathogenesis will allow for the directed design of complimentary medicine approaches. Specifically, cerebrovascular inflammation, an early event in the pathogenesis of AD, represents a potential target for polyphenols. Our laboratory has demonstrated that soluble ABeta aggregates selectively stimulate brain endothelial monolayers for NF-kB mediated inflammatory responses, including elevated monolayer permeability and an increased ability to bind monocytes. Our findings demonstrate that ABeta-induced vascular inflammation presents two prospective targets for polyphenol intervention: (1) preventing the formation of soluble ABeta aggregates from monomeric protein and (2) blocking NF-kB signaling pathways by neutralizing reactive oxygen species (ROS) second messengers. Accordingly, the proposed research will consider the hypothesis that polyphenols can reduce ABeta-induced inflammatory responses in cerebrovascular endothelial cells by interfering with both ABeta aggregation and ROS second messengers. This hypothesis will be initially tested using a group of structurally similar polyphenols that our laboratory has evaluated for inhibition in mechanistic-specific aggregation assays to illustrate variations in their anti-aggregation capabilities.
In Aim 1, the hypothesis that inhibition of ABeta aggregation by polyphenols decreases ABeta-induced vascular inflammatory responses will be examined by comparing brain endothelial monolayers treated with ABeta aggregates prepared in the presence of polyphenols capable or incapable of inhibiting ABeta aggregation. NF-kB activation will be used as an initial measure of endothelial perturbation and followed by monolayer permeability and monocyte adhesion assays to substantiate effects upon inflammation. Subsequent experiments will incorporate mechanistic-specific ABeta aggregation assays to extend investigation to additional polyphenols with diverse structures.
In Aim 2. the hypothesis that inhibition of ROS second messengers by polyphenols decreases ABeta-induced vascular inflammatory responses will be explored by comparing polyphenol antioxidant capacity with the attenuation of endothelial NF-kB activation and associated inflammatory responses induced by pre-formed ABeta aggregates. Substantiation of the dual action of polyphenols in mitigation of vascular inflammation will direct polyphenol-based complimentary medicine approaches toward polyphenols with both anti-aggregation and antioxidant capabilities.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Exploratory Grants (P20)
Project #
1P20GM103641-01
Application #
8460787
Study Section
Special Emphasis Panel (ZRR1-RI-4 (01))
Project Start
Project End
2013-05-31
Budget Start
2012-09-01
Budget End
2013-05-31
Support Year
1
Fiscal Year
2012
Total Cost
$201,819
Indirect Cost
$51,819
Name
University of South Carolina at Columbia
Department
Type
DUNS #
041387846
City
Columbia
State
SC
Country
United States
Zip Code
29208
Bam, Marpe; Yang, Xiaoming; Sen, Souvik et al. (2017) Characterization of Dysregulated miRNA in Peripheral Blood Mononuclear Cells from Ischemic Stroke Patients. Mol Neurobiol :
Pate, Kayla M; Rogers, McCall; Reed, John Will et al. (2017) Anthoxanthin Polyphenols Attenuate A? Oligomer-induced Neuronal Responses Associated with Alzheimer's Disease. CNS Neurosci Ther 23:135-144
Finnell, Julie E; Lombard, Calliandra M; Padi, Akhila R et al. (2017) Physical versus psychological social stress in male rats reveals distinct cardiovascular, inflammatory and behavioral consequences. PLoS One 12:e0172868
Finnell, Julie E; Lombard, Calliandra M; Melson, Michael N et al. (2017) The protective effects of resveratrol on social stress-induced cytokine release and depressive-like behavior. Brain Behav Immun 59:147-157
Shamran, Haidar; Singh, Narendra P; Zumbrun, Elizabeth E et al. (2017) Fatty acid amide hydrolase (FAAH) blockade ameliorates experimental colitis by altering microRNA expression and suppressing inflammation. Brain Behav Immun 59:10-20
Wood, Susan K; Valentino, Rita J (2017) The brain norepinephrine system, stress and cardiovascular vulnerability. Neurosci Biobehav Rev 74:393-400
Bam, M; Yang, X; Zumbrun, E E et al. (2017) Decreased AGO2 and DCR1 in PBMCs from War Veterans with PTSD leads to diminished miRNA resulting in elevated inflammation. Transl Psychiatry 7:e1222
Yanez, Maria; Blanchette, James; Jabbarzadeh, Ehsan (2017) Modulation of Inflammatory Response to Implanted Biomaterials Using Natural Compounds. Curr Pharm Des :
Chitrala, Kumaraswamy Naidu; Guan, Hongbing; Singh, Narendra P et al. (2017) CD44 deletion leading to attenuation of experimental autoimmune encephalomyelitis results from alterations in gut microbiome in mice. Eur J Immunol 47:1188-1199
Wood, Christopher S; Valentino, Rita J; Wood, Susan K (2017) Individual differences in the locus coeruleus-norepinephrine system: Relevance to stress-induced cardiovascular vulnerability. Physiol Behav 172:40-48

Showing the most recent 10 out of 122 publications