Serotype variability, genomic plasticity and increasing antibiotic resistance of S. pneumoniae, pose considerable challenges for designing intervention strategies for this global public health concern. There is a need for the identification as well as characterization of novel vaccine candidates for effective immunization against pneumococcus, as the available vaccines are not effective against all serotypes. Polyamines are ubiquitous small cationic molecules necessary for pneumococcal growth and virulence. Therefore, intracellular polyamine levels are tightly regulated, thus making polyamine transport mechanisms a highly attractive focus for investigation on pathogenesis and immune responses. Our preliminary results indicate that impaired polyamine transport causes attenuation of pneumonia in mouse models. However, the pathogen-host interactions responsible for this attenuation are yet to be characterized. Our central hypothesis is that attenuation in pneumococcal pneumonia by impaired pneumococcal polyamine transport is due to the reduced virulence factor gene expression and/or reduced resistance to host innate immune responses. We will test this hypothesis by conducting the following specific aims.
Specific aims : 1-identify polyamine responsive pneumococcal genes and pathways by comparing gene expression of wild type and ApotABCD S. pneumoniae (a strain with genetic deletion of polyamine transport operon) in a mouse model of pneumonia;2-determine the host innate immune responses to polyamine deficient pneumococcus by measuring the expression of antimicrobial proteins, acute phase proteins, opsonophagocytosis by macrophages and neutrophils, and host signaling pathways and functions including Toll-like receptor signaling, using proteomics. Successful completion ofthe proposed studies will identify the pneumococcal molecular mechanisms responsive to polyamine transport as well as specific host innate immune responses. Project results will shed light on the role of polyamines in infectious diseases in general for the identification of unique intra and extracellular targets for design of novel vaccines or therapeutics in future.

Public Health Relevance

Streptococcus pneumoniae is the most common cause of community acquired pneumonia and a leading cause of meningitis, sinusitis, chronic bronchitis, and otitis media. An estimated 570,000 cases of pneumococcal pneumonia occur annually in the United States alone. Deficiencies in polyamine transport cause attenuation of virulence of pneumonia. Polyamine transport genes that appear to be conserved within the soecies. provide a potential new class of broad-based vaccine candidates or therapeutic targets

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Exploratory Grants (P20)
Project #
5P20GM103646-02
Application #
8743219
Study Section
Special Emphasis Panel (ZGM1)
Project Start
Project End
Budget Start
2014-06-01
Budget End
2015-05-31
Support Year
2
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Mississippi State University
Department
Type
DUNS #
City
Mississippi State
State
MS
Country
United States
Zip Code
Varela-Stokes, Andrea S; Park, Si Hong; Kim, Sun Ae et al. (2017) Microbial Communities in North American Ixodid Ticks of Veterinary and Medical Importance. Front Vet Sci 4:179
Dhital, Saphala; Stokes, John V; Park, Nogi et al. (2017) Cannabidiol (CBD) induces functional Tregs in response to low-level T cell activation. Cell Immunol 312:25-34
Tuffs, Stephen W; James, David B A; Bestebroer, Jovanka et al. (2017) The Staphylococcus aureus superantigen SElX is a bifunctional toxin that inhibits neutrophil function. PLoS Pathog 13:e1006461
Sansevere, Emily A; Luo, Xiao; Park, Joo Youn et al. (2017) Transposase-Mediated Excision, Conjugative Transfer, and Diversity of ICE6013 Elements in Staphylococcus aureus. J Bacteriol 199:
Krishnavajhala, Aparna; Wilder, Hannah K; Boyle, William K et al. (2017) Imaging of Borrelia turicatae Producing the Green Fluorescent Protein Reveals Persistent Colonization of the Ornithodoros turicata Midgut and Salivary Glands from Nymphal Acquisition through Transmission. Appl Environ Microbiol 83:
Park, Joo Youn; Moon, Bo Youn; Park, Juw Won et al. (2017) Genetic engineering of a temperate phage-based delivery system for CRISPR/Cas9 antimicrobials against Staphylococcus aureus. Sci Rep 7:44929
Xu, Yifei; Ramey, Andrew M; Bowman, Andrew S et al. (2017) Low-Pathogenic Influenza A Viruses in North American Diving Ducks Contribute to the Emergence of a Novel Highly Pathogenic Influenza A(H7N8) Virus. J Virol 91:
Martin, Brigitte E; Sun, Hailiang; Carrel, Margaret et al. (2017) Feral Swine in the United States Have Been Exposed to both Avian and Swine Influenza A Viruses. Appl Environ Microbiol 83:
Sun, Hailiang; Kaplan, Bryan S; Guan, Minhui et al. (2017) Pathogenicity and transmission of a swine influenza A(H6N6) virus. Emerg Microbes Infect 6:e17
Brown, Lindsey R; Caulkins, Rachel C; Schartel, Tyler E et al. (2017) Increased Zinc Availability Enhances Initial Aggregation and Biofilm Formation of Streptococcus pneumoniae. Front Cell Infect Microbiol 7:233

Showing the most recent 10 out of 46 publications