The ability to regenerate cutaneous sensory axons in response to injury is crucial for restoring tissue function. Despite its importance and many research efforts in the past, the mechanisms for cutaneous axon regeneration following injury have remained elusive. We have previously discovered that the small reactive oxygen species hydrogen peroxide (H2O2) is a key regulatory molecule for stimulating cutaneous axon growth. Historically, H2O2 has been seen as a cell-damaging molecule, when present at high concentrations in cells. Recent work however, demonstrates that low, non-toxic concentrations of H2O2 are important for regulation of many cellular functions. This is achieved by the oxidation of redox-sensitive cysteine residues in signaling proteins, most notably of kinases, phosphatases, and transcription factors, which alters their structure and function. As the research field of H2O2 signaling is relatively new, insight into its signaling properties during tissue repair is only beginning to emerge. The significance of this proposal is that it will elucidate mechanisms utilized by injury-induced H2O2 that stimulate cutaneous axon regeneration. The insight gained from this research will aid in the development of treatments for damaged axons due to disease or trauma. Our approach is to combine in vivo imaging and parallel deep sequencing of miRNAs and mRNAs to analyze H2O2 responsive genetic networks in somatosensory neurons that are essential for stimulating axon regeneration.

Public Health Relevance

The goal of this project is to understand how hydrogen peroxide promotes the natural repair and regeneration of cutaneous somatosensory axons. The project is relevant to public human health because cutaneous axon damage, such as in peripheral neuropathy or trauma, significantly impacts sensory function and wound healing. This research will further reveal fundamental principles of hydrogen peroxide signaling in wounds and lay the groundwork for future investigations of axon repair in disease models.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Exploratory Grants (P20)
Project #
Application #
Study Section
Special Emphasis Panel (ZGM1-TWD-B)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Mount Desert Island Biological Lab
Salsbury Cove
United States
Zip Code
Wu, Cheng-Wei; Deonarine, Andrew; Przybysz, Aaron et al. (2016) The Skp1 Homologs SKR-1/2 Are Required for the Caenorhabditis elegans SKN-1 Antioxidant/Detoxification Response Independently of p38 MAPK. PLoS Genet 12:e1006361
Soundararajan, Ramani; Stearns, Timothy M; Czachor, Alexander et al. (2016) Global gene profiling of aging lungs in Atp8b1 mutant mice. Aging (Albany NY) 8:2232-2252
Lisse, Thomas S; Middleton, Leah J; Pellegrini, Adriana D et al. (2016) Paclitaxel-induced epithelial damage and ectopic MMP-13 expression promotes neurotoxicity in zebrafish. Proc Natl Acad Sci U S A 113:E2189-98
Rizzo, Francesca; Coffman, James A; Arnone, Maria Ina (2016) An Elk transcription factor is required for Runx-dependent survival signaling in the sea urchin embryo. Dev Biol 416:173-86
King, Benjamin L; Yin, Viravuth P (2016) A Conserved MicroRNA Regulatory Circuit Is Differentially Controlled during Limb/Appendage Regeneration. PLoS One 11:e0157106
Davis, Allan Peter; Grondin, Cynthia J; Johnson, Robin J et al. (2016) The Comparative Toxicogenomics Database: update 2017. Nucleic Acids Res :
King, Benjamin L; Shi, Ling Fang; Kao, Peter et al. (2016) Calcium activated K⁺ channels in the electroreceptor of the skate confirmed by cloning. Details of subunits and splicing. Gene 578:63-73
Grondin, Cynthia J; Davis, Allan Peter; Wiegers, Thomas C et al. (2016) Advancing Exposure Science through Chemical Data Curation and Integration in the Comparative Toxicogenomics Database. Environ Health Perspect 124:1592-1599
Yamada, Toshiki; Krzeminski, Mickael; Bozoky, Zoltan et al. (2016) Role of CBS and Bateman Domains in Phosphorylation-Dependent Regulation of a CLC Anion Channel. Biophys J 111:1876-1886
Hartig, Ellen I; Zhu, Shusen; King, Benjamin L et al. (2016) Cortisol-treated zebrafish embryos develop into pro-inflammatory adults with aberrant immune gene regulation. Biol Open 5:1134-41

Showing the most recent 10 out of 36 publications