Cardiovascular disease is the leading cause of death among people with diabetes and may occur in the absence of other known risk factors. Mitochondrial bioenergetic deficits and increased free radical production are pathological hallmarks of diabetic cardiomyopathy (DCM). A goal of this project is to determine the molecular changes that occur in mitochondria to induce metabolic dysfunction and oxidative stress. Specifically, we are addressing how dysregulated mitochondrial protein lysine acetylation contributes to metabolic inflexibility, mitochondrial dysfunction, and the progression of DCM. Our hypothesis is that hyperglycemia leads to increased, pathological protein lysine acetylation of specific metabolic enzymes, such as protein kinase A, and this contributes to fatty acid oxidation, mitochondrial dysfunction, and increased oxidative stress. Using a transgenic rodent model of type 1 diabetes and cell culture techniques, we will test the hypothesis as follows:
Aim 1. Define the changes that occur to mitochondria that lead to mitochondrial dysfunction and increased oxidative stress with the progression of diabetes. Mitochondrial substrate selection, oxidative phosphorylation, and free radical production will be analyzed in parallel with changes in cardiac structure and function using magnetic resonance imaging (MRI) and histology.
Aim 2. Define the contribution of hyper-acetylation to mitochondrial dysfunction. The consequences of hyper-acetylation on oxidative phosphorylation, oxidative stress, and diabetic cardiomyopathy will be determined. This will be done by a) MS analysis of acetylated proteins;b) identifying the functional changes that hyperacetylation induces;and c) identifying the cause of diabetes induced hyperacetylation.
Aim 3. Determine the role of PKA in contributing to metabolic inflexibility and mitochondrial dysfunction.
This aim will test the hypothesis that our observed decrease in PKA activity is mediated by oxidation and/or acetylation. Mechanistic studies will determine the occurrence and consequences of these modifications on mitochondrial respiratory activity and free radical production.

Public Health Relevance

Heart disease is a leading cause of disability and death in people with diabetes. The goal of this project is to understand how changes in metabolism induced by diabetes leads to increases in free radical production, bioenergetic deficits, and cardiac disease.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Exploratory Grants (P20)
Project #
9P20GM104934-06
Application #
8521825
Study Section
Special Emphasis Panel (ZRR1-RI-B (01))
Project Start
Project End
Budget Start
2012-09-10
Budget End
2013-06-30
Support Year
6
Fiscal Year
2012
Total Cost
$254,250
Indirect Cost
$12,000
Name
University of Oklahoma Health Sciences Center
Department
Type
DUNS #
878648294
City
Oklahoma City
State
OK
Country
United States
Zip Code
73117
Chen, Qian; Qiu, Fangfang; Zhou, Kelu et al. (2017) Pathogenic Role of microRNA-21 in Diabetic Retinopathy Through Downregulation of PPAR?. Diabetes 66:1671-1682
Li, Manna; Qian, Ming; Xu, Jian (2017) Vascular Endothelial Regulation of Obesity-Associated Insulin Resistance. Front Cardiovasc Med 4:51
Pearsall, Elizabeth A; Cheng, Rui; Zhou, Kelu et al. (2017) PPAR? is essential for retinal lipid metabolism and neuronal survival. BMC Biol 15:113
Vadvalkar, Shraddha S; Matsuzaki, Satoshi; Eyster, Craig A et al. (2017) Decreased Mitochondrial Pyruvate Transport Activity in the Diabetic Heart: ROLE OF MITOCHONDRIAL PYRUVATE CARRIER 2 (MPC2) ACETYLATION. J Biol Chem 292:4423-4433
Le, Yun-Zheng (2017) VEGF production and signaling in Müller glia are critical to modulating vascular function and neuronal integrity in diabetic retinopathy and hypoxic retinal vascular diseases. Vision Res 139:108-114
Qiu, Fangfang; Liu, Zhen; Zhou, Yueping et al. (2017) Decreased Circulating Levels of Dickkopf-1 in Patients with Exudative Age-related Macular Degeneration. Sci Rep 7:1263
He, Xuemin; Cheng, Rui; Park, Kyoungmin et al. (2017) Pigment epithelium-derived factor, a noninhibitory serine protease inhibitor, is renoprotective by inhibiting the Wnt pathway. Kidney Int 91:642-657
Jung, Dongju; Xu, Yuechi; Sun, Zhongjie (2017) Induction of anti-aging gene klotho with a small chemical compound that demethylates CpG islands. Oncotarget 8:46745-46755
Du, Mei; Phelps, Eric; Balangue, Michael J et al. (2017) Transgenic Mice Over-Expressing RBP4 Have RBP4-Dependent and Light-Independent Retinal Degeneration. Invest Ophthalmol Vis Sci 58:4375–4383
Shin, Younghwa; Moiseyev, Gennadiy; Chakraborty, Dibyendu et al. (2017) A Dominant Mutation in Rpe65, D477G, Delays Dark Adaptation and Disturbs the Visual Cycle in the Mutant Knock-In Mice. Am J Pathol 187:517-527

Showing the most recent 10 out of 94 publications