Diabetic animal models are essential for studies in all of the COBRE projects and are also often required by other diabetes researchers. However, induction and monitoring of diabetes and maintenance of diabetic animals for long durations are associated with a tremendous amount of routine work. The goal of this Core is to provide a centralized service for induction of diabetes, maintenance and use of diabetic animals and to provide support to the diabetes research. In the first phase of COBRE, we have establistied the diabetic animal core and diabetic animal tissue bank. The Core has provided diabetic animals, tissues, data and technical assistance to multiple Pis. The Core has greatly increased the efficiency of diabetic animal research and has reduced the costs to PJIs and other COBRE members for diabetic animal models. As diabetes research expands in Oklahoma, there is a demand to expand this Core service to serve more diabetes researchers in Oklahoma. In the second phase of the COBRE, we will continue and augment these Core services. 1). To induce diabetes by streptozotocin injection in rats or mice or in transgenic or gene knockout mice as required by investigators. 2). To breed and genotype genetic diabetic mice and rats. 3). To monitor diabetes by measuring hyperglycemia and inject insulin when necessary. 4). To collect and record clinical data from diabetic animals, such as body weight and urine volume. 5). To monitor renal function of diabetic animals by measuring albumin and creatinine concentrations in the urine. 6). To provide special diets for diabetic animals upon request by users. 7). To induce retinal neovascularization in the oxygen-induced retinopathy (OIR) model, a commonly used model for proliferative diabetic retinopathy. 8). To perform specialized assays to evaluate diabetic complications. 9). To dissect tissues and coordinate sharing of animal tissues. This Diabetic Animal Core will assist the PJIs in their projects and reduce their routine work in the induction and maintenance of diabetic animals. The coordinated sharing of diabetic animal tissues will also substantially reduce the budget for animal models.

Public Health Relevance

Diabetes represents a major threat to the health of working age and older populations. More diabetes research is required to understand the pathogenesis of diabetes and its complications and develop new treatments. Most diabetes studies require using diabetic animal models. This core will provide centralized support to researchers using diabetic animal models and thus, will promote diabetes research.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Exploratory Grants (P20)
Project #
Application #
Study Section
Special Emphasis Panel (ZRR1-RI-B)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Oklahoma Health Sciences Center
Oklahoma City
United States
Zip Code
Gao, Diansa; Zuo, Zhong; Tian, Jing et al. (2016) Activation of SIRT1 Attenuates Klotho Deficiency-Induced Arterial Stiffness and Hypertension by Enhancing AMP-Activated Protein Kinase Activity. Hypertension 68:1191-1199
Cheng, Rui; Ding, Lexi; He, Xuemin et al. (2016) Interaction of PPARα With the Canonic Wnt Pathway in the Regulation of Renal Fibrosis. Diabetes 65:3730-3743
Griffin, Timothy M; Humphries, Kenneth M; Kinter, Michael et al. (2016) Nutrient sensing and utilization: Getting to the heart of metabolic flexibility. Biochimie 124:74-83
Tsutsui, Yuko; Deredge, Daniel; Wintrode, Patrick L et al. (2016) Imatinib binding to human c-Src is coupled to inter-domain allostery and suggests a novel kinase inhibition strategy. Sci Rep 6:30832
He, Xuemin; Cheng, Rui; Park, Kyoungmin et al. (2016) Pigment epithelium-derived factor, a noninhibitory serine protease inhibitor, is renoprotective by inhibiting the Wnt pathway. Kidney Int :
Zhang, Zhi; Subramaniam, Sabareesh; Kale, Justin et al. (2016) BH3-in-groove dimerization initiates and helix 9 dimerization expands Bax pore assembly in membranes. EMBO J 35:208-36
Lin, Yi; Chen, Jianglei; Sun, Zhongjie (2016) Antiaging Gene Klotho Deficiency Promoted High-Fat Diet-Induced Arterial Stiffening via Inactivation of AMP-Activated Protein Kinase. Hypertension 67:564-73
Chen, Qian; Takahashi, Yusuke; Oka, Kazuhiro et al. (2016) Functional Differences of Very-Low-Density Lipoprotein Receptor Splice Variants in Regulating Wnt Signaling. Mol Cell Biol 36:2645-54
Varshney, Rohan; Ali, Quaisar; Wu, Chengxiang et al. (2016) Monocrotaline-Induced Pulmonary Hypertension Involves Downregulation of Antiaging Protein Klotho and eNOS Activity. Hypertension 68:1255-1263
(2016) Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy 12:1-222

Showing the most recent 10 out of 60 publications