The objectives of the Center for Studies of Host Response to Cancer Therapy are to (1) form a self- sustaining multidisciplinary research center within the University of Arkansas for Medical Sciences (UAMS) that examines mechanisms of and prevention strategies for cancer-therapy-induced toxicity and (2) help junior investigators with a common research focus establish themselves as independent scientists. Achieving these goals will create a vibrant, synergistic research environment to comprehensively address the mechanisms of side effects of cancer therapy and to develop effective strategies to prevent such side effects. To our knowledge, few centers exist that focus on cancer survivors, and none take the paradigm-shifting approach of proactively addressing treatment-related toxicities. Specifically, this Center will provide an environment for young investigators to succeed as independent scientists (Aim 1); strengthen the overall research infrastructure at UAMS and the Cancer Institute (Aim 2); and ensure that the Center for Studies of Host Response to Cancer Therapy becomes self-sustaining (Aim 3). The four initial Project Leaders are promising new/early-stage investigators with their own active research programs and established collaborations with fellow Project Leaders and/or mentors. All are in the tenure track with their own research laboratories, and all have been provided generous institutional startup packages by their departments. Opportunities will be provided by implementing individualized mentoring and faculty development plans and by offering guidance and support from an administrative and two scientific cores. A high likelihood of success is ensured by strong institutional support combined with active interest from funding agencies in improving quality of life among cancer survivors. To replace Project Leaders who achieve independence and graduate from COBRE support, a pipeline of new Project Leaders is ensured through institutional support for recruitment of junior faculty, combined with a structured pilot project program. Building strong Center cores and collaborations with existing institutional cores will also contribute to establishing the Center for Studies of Host Response to Cancer Therapy as a self-sustaining center on campus. The Center's progress will be guided by External and Internal Advisory Committees and a Core Oversight Committee. The Internal Advisory Committee, comprised of individuals in key positions, with broad representation from across the institution and with a vested interest in the Center's achievements, will ensure the initial success of the Center as well as its long-term viability as an independent unit on campus.

Public Health Relevance

Many cancer survivors cured of their original malignancy suffer from treatment-related problems, ranging from mild psychosocial disabilities to life-threatening physical sequelae. Comparatively little effort has been directed toward determining the mechanisms that are responsible for side effects that persist after cancer therapy and at developing effective interventions to prevent them. This COBRE Center addresses these unmet needs and ensures that advances in oncology go hand in hand with efforts to optimize the quality of life of cancer survivors, thereby maximizing the number of uncomplicated cancer cures.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Exploratory Grants (P20)
Project #
5P20GM109005-04
Application #
9458216
Study Section
Special Emphasis Panel (ZGM1)
Program Officer
Caldwell, Sheila
Project Start
2015-06-24
Project End
2020-03-31
Budget Start
2018-04-01
Budget End
2019-03-31
Support Year
4
Fiscal Year
2018
Total Cost
Indirect Cost
Name
University of Arkansas for Medical Sciences
Department
Pharmacology
Type
Schools of Pharmacy
DUNS #
122452563
City
Little Rock
State
AR
Country
United States
Zip Code
72205
Alam, Sinthia; Carter, Gwendolyn S; Krager, Kimberly J et al. (2018) PCB11 Metabolite, 3,3'-Dichlorobiphenyl-4-ol, Exposure Alters the Expression of Genes Governing Fatty Acid Metabolism in the Absence of Functional Sirtuin 3: Examining the Contribution of MnSOD. Antioxidants (Basel) 7:
Barham, Caroline; Fil, Daniel; Byrum, Stephanie D et al. (2018) RNA-Seq Analysis of Spinal Cord Tissues from hPFN1G118V Transgenic Mouse Model of ALS at Pre-symptomatic and End-Stages of Disease. Sci Rep 8:13737
Janganati, Venumadhav; Ponder, Jessica; Balasubramaniam, Meenakshisundaram et al. (2018) MMB triazole analogs are potent NF-?B inhibitors and anti-cancer agents against both hematological and solid tumor cells. Eur J Med Chem 157:562-581
Banerjee, Sudip; Shah, Sumit K; Melnyk, Stepan B et al. (2018) Cebpd Is Essential for Gamma-Tocotrienol Mediated Protection against Radiation-Induced Hematopoietic and Intestinal Injury. Antioxidants (Basel) 7:
Wang, Lei; Fang, Bin; Fujiwara, Toshifumi et al. (2018) Deletion of ferroportin in murine myeloid cells increases iron accumulation and stimulates osteoclastogenesis in vitro and in vivo. J Biol Chem 293:9248-9264
Harrill, Alison H; Lin, Haixia; Tobacyk, Julia et al. (2018) Mouse population-based evaluation of urinary protein and miRNA biomarker performance associated with cisplatin renal injury. Exp Biol Med (Maywood) 243:237-247
Zhang, Xin; Zhang, Suping; Liu, Xingui et al. (2018) Oxidation resistance 1 is a novel senolytic target. Aging Cell :e12780
Alexander, Tyler C; Butcher, Hannah; Krager, Kimberly et al. (2018) Behavioral Effects of Focal Irradiation in a Juvenile Murine Model. Radiat Res 189:605-617
He, Liu-Jun; Yang, Dong-Lin; Li, Shi-Qiang et al. (2018) Facile construction of fused benzimidazole-isoquinolinones that induce cell-cycle arrest and apoptosis in colorectal cancer cells. Bioorg Med Chem 26:3899-3908
Kiaei, Mahmoud; Balasubramaniam, Meenakshisundaram; Govind Kumar, Vivek et al. (2018) ALS-causing mutations in profilin-1 alter its conformational dynamics: A computational approach to explain propensity for aggregation. Sci Rep 8:13102

Showing the most recent 10 out of 81 publications