More than 98% of existing molecules cannot access the brain tissue because ofthe blood brain barrier (BBB). As a result, drugs that could be useful for central nervous system diseases cannot reach their targets efficiently and fail to exhibit acceptable therapeutic effect. The goal of the proposed research is to develop a highly selective and efficient system for drug delivery into the brain and to apply it to metal ion chelators that can solubilize AB aggregates and inhibit AB plaque formation associated with Alzheimer's disease. We hypothesize that by incorporating two targeting moieties into a pH and redox potential dual responsive nanogel, metal ion chelators, D-penicillamine (PA) and clioquinol (CQ) can be selectively targeted to the brain tissue and attenuate AB aggregation.
Aim 1 is to develop a pH and redox potential dual responsive nanogel and explore the relationship between polymer structure and nanogel properties.
In aim 2, we will load chelators or fluorescent dyes into dual targeted dual responsive nanogel (DTDR) with two braintargeting moieties (transferrin and glutathione) and measure DTDR efficacy and BBB penetration in vitro using a Transwell model. The neuroprotective effect of chelator-loaded DTDR will be compared with free drug counterparts and optimized by adjusting the densities of transferrin, glutathione, and polyethylene glycol.
Aim 3 will assess the efficacy and BBB penetration of fluorescent dye or chelator-loaded brain-targeting DTDR in vivo. The composition of brain-targeted fluorescent DTDR will be optimized with IVIS imaging to achieve high selectivity for brain tissue in mice. The therapeutic efficacy of the brain-targeted PA or CQ-loaded DTDR will be quantified by measuring extracellular brain AB using in vivo microdialysis (IVM) in Tg2576 mice and compared with their free drug counterparts. Correlations between PA and CQ concentrations obtained from IVM, Zn and Cu residual in the brain tissue, amyloid plaque deposition from immunohistochemistry, and the residual AB in the brain tissue will be analyzed. Pharmacokinetic properties and systemic toxicity ofthe DTDR nanogel will also be evaluated. The success of this study should drastically increase the spectrum of drugs that can be developed for central nervous system diseases.

Public Health Relevance

The impact of developing a brain targeted delivery system is extensive. Due to the versatility of proposed delivery system, the application of proposed dual targeted dual responsive nanogel is not limited to Alzheimer's disease. This unique platform can also be applied for the study and treatment of other diseases such as glioblastoma, Parkinson disease, Wilson's disease, and multiple sclerosis.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Exploratory Grants (P20)
Project #
1P20GM109091-01
Application #
8653312
Study Section
Special Emphasis Panel (ZGM1-TWD-A (C1))
Project Start
Project End
Budget Start
2014-07-10
Budget End
2015-04-30
Support Year
1
Fiscal Year
2014
Total Cost
$219,750
Indirect Cost
$69,750
Name
University of South Carolina at Columbia
Department
Type
DUNS #
041387846
City
Columbia
State
SC
Country
United States
Zip Code
29208
Liang, Jiaxin; Chen, Mengqian; Hughes, Daniel et al. (2018) CDK8 Selectively Promotes the Growth of Colon Cancer Metastases in the Liver by Regulating Gene Expression of TIMP3 and Matrix Metalloproteinases. Cancer Res 78:6594-6606
Chukwurah, Evelyn; Patel, Rekha C (2018) Stress-induced TRBP phosphorylation enhances its interaction with PKR to regulate cellular survival. Sci Rep 8:1020
Singh, Priyanka; Jenkins, Laura M; Horst, Ben et al. (2018) Inhibin Is a Novel Paracrine Factor for Tumor Angiogenesis and Metastasis. Cancer Res 78:2978-2989
Wyatt, Michael D; Reilly, Nicole M; Patel, Shikha et al. (2018) Thiopurine-induced mitotic catastrophe in Rad51d-deficient mammalian cells. Environ Mol Mutagen 59:38-48
Serrao, Anne; Jenkins, Laura M; Chumanevich, Alexander A et al. (2018) Mediator kinase CDK8/CDK19 drives YAP1-dependent BMP4-induced EMT in cancer. Oncogene 37:4792-4808
Varadaraj, Archana; Magdaleno, Carina; Mythreye, Karthikeyan (2018) Deoxycholate Fractionation of Fibronectin (FN) and Biotinylation Assay to Measure Recycled FN Fibrils in Epithelial Cells. Bio Protoc 8:
Liu, Changlong; Banister, Carolyn E; Weige, Charles C et al. (2018) PRDM1 silences stem cell-related genes and inhibits proliferation of human colon tumor organoids. Proc Natl Acad Sci U S A 115:E5066-E5075
Yu, Jin; Zhu, Hong; Taheri, Saeid et al. (2018) Impact of nutrition on inflammation, tauopathy, and behavioral outcomes from chronic traumatic encephalopathy. J Neuroinflammation 15:277
Jenkins, Laura M; Horst, Ben; Lancaster, Carly L et al. (2018) Dually modified transmembrane proteoglycans in development and disease. Cytokine Growth Factor Rev 39:124-136
Alam, Amer; Küng, Raphael; Kowal, Julia et al. (2018) Structure of a zosuquidar and UIC2-bound human-mouse chimeric ABCB1. Proc Natl Acad Sci U S A 115:E1973-E1982

Showing the most recent 10 out of 49 publications