Liver injury of different etiologies leads to a wound healing process involving activation of hepatic stellate cells (HSCs). However, an ongoing hepatocyte injury and inflammation results in an uncontrolled activation and proliferation of HSCs and development of hepatic fibrosis leading to cirrhosis and even hepatocellular cancer. Despite the advances made, gaps remain in our understanding of the mechanisms involved in the process of HSC transformation from quiescent to activated phenotype. Recently, we discovered that the phosphodiesterase 4 (PDE4) subfamily of enzymes play a pathogenic role in the development of cholestatic liver injury and fibrosis. Notably, PDE4s are not present in quiescent HSCs and are rapidly induced upon activation in vitro. Further, the PDE4 specific inhibitor, rolipram, effectively attenuates SMA, collagen expression and accompanying morphological changes in HSCs. PDE4 is the largest sub-family among cAMP- hydrolyzing PDEs, which tightly regulate the levels of cellular cAMP. cAMP, through its effector molecules protein kinase A (PKA) and Exchange Protein directly Activated by cAMP (EPAC), has been shown to down- regulate cytokine induced fibrogenic genes in non-hepatic cells. Hence, we hypothesize that induction of PDE4 expression and activity plays a causal role in HSC activation by decreasing cAMP-PKA/EPAC activities and promoting fibrogenic signaling. We postulate that during HSC activation, promoter associated epigenetic changes and post-translational modifications play a significant role in the regulation of PDE4 expression and activity. We also postulate that PDE4 inhibition will restore PKA/EPAC activities and attenuate TGF-Smad signaling through: (i) inactivation of relevant MAPKs; and (ii) de-repressing PPAR leading to decreased expression of SMA and Col1A1. Importantly, inhibition of PDE4 activity may be a significant therapeutic approach for liver fibrosis.
The specific aims of this proposal are to: 1) Determine the role of PDE4 in the regulation of fibrogenic signaling in HSCs; 2) Determine promoter-associated epigenetic modifications contributing to the induction of PDE4 isoforms during HSC activation; and 3) Determine the post-translational modifications (PTMs) relevant for PDE4 isoform function during HSC activation. Importantly, the results of this COBRE-funded project will provide proof-of-principle and mechanistic rationale for in vivo translational studies (R01) to examine PDE4 targeted strategies for prevention and treatment of hepatic fibrosis.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Exploratory Grants (P20)
Project #
1P20GM113226-01
Application #
8813881
Study Section
Special Emphasis Panel (ZGM1-TWD-A (C1))
Project Start
2016-06-10
Project End
2021-03-31
Budget Start
2014-12-01
Budget End
2015-11-30
Support Year
1
Fiscal Year
2016
Total Cost
$184,680
Indirect Cost
$64,680
Name
University of Louisville
Department
Type
DUNS #
057588857
City
Louisville
State
KY
Country
United States
Zip Code
40208
Lang, Anna L; Beier, Juliane I (2018) Interaction of volatile organic compounds and underlying liver disease: a new paradigm for risk. Biol Chem 399:1237-1248
Beier, Juliane I; Banales, Jesus M (2018) Pyroptosis: An inflammatory link between NAFLD and NASH with potential therapeutic implications. J Hepatol :
Shao, Tuo; Zhao, Cuiqing; Li, Fengyuan et al. (2018) Intestinal HIF-1? deletion exacerbates alcoholic liver disease by inducing intestinal dysbiosis and barrier dysfunction. J Hepatol 69:886-895
Poole, Lauren G; Beier, Juliane I; Torres-Gonzales, Edilson et al. (2018) Chronic + binge alcohol exposure promotes inflammation and alters airway mechanics in the lung. Alcohol :
Hardesty, Josiah E; Al-Eryani, Laila; Wahlang, Banrida et al. (2018) Epidermal Growth Factor Receptor Signaling Disruption by Endocrine and Metabolic Disrupting Chemicals. Toxicol Sci 162:622-634
Cui, Guozhen; Martin, Robert C; Liu, Xingkai et al. (2018) Serological biomarkers associate ultrasound characteristics of steatohepatitis in mice with liver cancer. Nutr Metab (Lond) 15:71
Cui, Guozhen; Martin, Robert C; Jin, Hang et al. (2018) Up-regulation of FGF15/19 signaling promotes hepatocellular carcinoma in the background of fatty liver. J Exp Clin Cancer Res 37:136
Zheng, Yuxuan; Ritzenthaler, Jeffrey D; Burke, Tom J et al. (2018) Age-dependent oxidation of extracellular cysteine/cystine redox state (Eh(Cys/CySS)) in mouse lung fibroblasts is mediated by a decline in Slc7a11 expression. Free Radic Biol Med 118:13-22
Hein, David W; Zhang, Xiaoyan; Doll, Mark A (2018) Role of N-acetyltransferase 2 acetylation polymorphism in 4, 4'-methylene bis (2-chloroaniline) biotransformation. Toxicol Lett 283:100-105
Hein, David W; Fakis, Giannoulis; Boukouvala, Sotiria (2018) Functional expression of human arylamine N-acetyltransferase NAT1*10 and NAT1*11 alleles: a mini review. Pharmacogenet Genomics 28:238-244

Showing the most recent 10 out of 68 publications