Alcoholic liver disease (ALD) ranks among the major causes of morbidity and mortality in the world, and affects millions of patients worldwide each year. Despite the progress made on ALD pathogenesis, the specific mechanism(s) responsible for ALD development and progression remain poorly understood. Importantly, there is no FDA approved therapy for any stage of ALD. Recent studies from our laboratory and others have demonstrated that dietary unsaturated fat, specifically rich in linoleic acid (LA), exacerbated alcohol-mediated liver and intestinal injury in an experimental animal model of ALD. Our preliminary data show elevated levels of circulating oxidized LA metabolites, specifically 9- and 13-hydroxy-octadecadienoic acids (9-and 13-HODEs) in parallel with the up-regulation of hepatic 12/15 lipoxygenase (12/15-LO), a key enzyme involved in the oxidation of LA. These findings have led us to postulate that specific oxidized LA metabolites (OXLAMs) may play a significant role in ALD. OXLAMs are natural ligands to the transient receptor potential vanilloid 1 (TRPV1), a ligand-gated non-selective cation channel with high permeability for Ca2+. Recent studies demonstrate a critical role for Ca2+ release in inflammasome activation, which are key signaling platforms for stressor-induced pathogenesis, and which, upon activation, trigger the release of highly pro-inflammatory cytokines interleukin-1? (IL-1?) and interleukin-18 (IL-18). IL-1? release is thought to be a critical mediator of inflammation and thus, serves as a potential therapeutic target for treating hepatic inflammation in ALD. Based on our own and other published findings, our CENTRAL HYPOTHESIS is that OXLAMs play a significant role in the development and progression of ALD. We hypothesize that OXLAMs contribute to the EtOH- induced hepatic inflammation and injury via two mechanisms: 1) OXLAMs-mediated mitochondrial dysfunction and hepatocyte death; and 2) OXLAM/TRPV1/Ca2+-mediated inflammasome activation and IL-1? release. The proposed studies will lead to better understanding of molecular mechanisms contributing to the pathogenesis of alcohol-induced liver inflammation and injury. These studies will also help us to better understand alcohol-diet interactions, which may lead to identification of new therapeutic targets and potential dietary interventions for treating ALD, as well as help to explain why only some people who drink heavily develop clinically important ALD. A combination of in vitro, in-vivo animal (knockouts and chimeric mouse models) and human studies will be employed.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Exploratory Grants (P20)
Project #
5P20GM113226-03
Application #
9462916
Study Section
Special Emphasis Panel (ZGM1)
Project Start
Project End
Budget Start
2018-04-01
Budget End
2019-03-31
Support Year
3
Fiscal Year
2018
Total Cost
Indirect Cost
Name
University of Louisville
Department
Type
DUNS #
057588857
City
Louisville
State
KY
Country
United States
Zip Code
40292
Ghosh Dastidar, Shubha; Warner, Jeffrey B; Warner, Dennis R et al. (2018) Rodent Models of Alcoholic Liver Disease: Role of Binge Ethanol Administration. Biomolecules 8:
Gosney, Julie A; Wilkey, Daniel W; Merchant, Michael L et al. (2018) Proteomics reveals novel protein associations with early endosomes in an epidermal growth factor-dependent manner. J Biol Chem 293:5895-5908
Atay, Safinur; Wilkey, Daniel W; Milhem, Mohammed et al. (2018) Insights into the Proteome of Gastrointestinal Stromal Tumors-Derived Exosomes Reveals New Potential Diagnostic Biomarkers. Mol Cell Proteomics 17:495-515
Schuster, Susanne; Johnson, Casey D; Hennebelle, Marie et al. (2018) Oxidized linoleic acid metabolites induce liver mitochondrial dysfunction, apoptosis, and NLRP3 activation in mice. J Lipid Res 59:1597-1609
Lang, Anna L; Chen, Liya; Poff, Gavin D et al. (2018) Vinyl chloride dysregulates metabolic homeostasis and enhances diet-induced liver injury in mice. Hepatol Commun 2:270-284
Pandit, Harshul; Li, Yan; Li, Xuanyi et al. (2018) Enrichment of cancer stem cells via ?-catenin contributing to the tumorigenesis of hepatocellular carcinoma. BMC Cancer 18:783
Das, Samarendra; Rai, Anil; Mishra, D C et al. (2018) Statistical Approach for Gene Set Analysis with Trait Specific Quantitative Trait Loci. Sci Rep 8:2391
He, Liqing; Prodhan, Md Aminul Islam; Yuan, Fang et al. (2018) Simultaneous quantification of straight-chain and branched-chain short chain fatty acids by gas chromatography mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 1092:359-367
Vatsalya, Vatsalya; Kong, Maiying; Cave, Matthew C et al. (2018) Association of serum zinc with markers of liver injury in very heavy drinking alcohol-dependent patients. J Nutr Biochem 59:49-55
Prodhan, Md Aminul Islam; Yin, Xinmin; Kim, Seongho et al. (2018) Surface fitting for calculating the second dimension retention index in comprehensive two-dimensional gas chromatography mass spectrometry. J Chromatogr A 1539:62-70

Showing the most recent 10 out of 68 publications