This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff. Programmed cell death (PCD) is both an important physiological process and a significant anti-tumor defense mechanism in multicellular organisms. Some have even called the ability to evade programmed cell death a """"""""hallmark of cancer"""""""". The budding yeast, Saccharomyces cerevisiae, has served as a useful model for complex physiological processes of metazoan cells including PCD. Much work has gone into attempting to describe the molecular mechanisms that drive programmed cell death. For the past four years, my laboratory at Providence College has studied UTH1 and BXI1, two genes linked with programmed cell death in yeast. We have generated mutants lacking UTH1 and BXI1 and have shown that they have phenotypes linking them to the cell wall and the unfolded protein response respectively. This proposal outlines genetic strategies to identify the molecular pathways involved in UTH1 and BXI1 function. It will exploit the primary advantage of the yeast system over its mammalian counterpart as a model system for programmed cell death: Yeast cells are amenable to genetic analysis that allows investigators to identify rapidly molecular pathways underlying a biological process. The genetic strategies described in this proposal will seek to clarify the genetic relationships between UTH1, BXI1, and other PCD genes in yeast to identify the molecular pathways that regulate programmed cell death in this organism. Given the remarkable conservation of the apoptotic pathways across diverse species, this analysis should lead to further insights into the analogous processes in higher organisms including human beings.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Exploratory Grants (P20)
Project #
5P20RR016457-11
Application #
8360072
Study Section
Special Emphasis Panel (ZRR1-RI-4 (01))
Project Start
2011-05-01
Project End
2012-04-30
Budget Start
2011-05-01
Budget End
2012-04-30
Support Year
11
Fiscal Year
2011
Total Cost
$19,052
Indirect Cost
Name
University of Rhode Island
Department
Pharmacology
Type
Schools of Pharmacy
DUNS #
144017188
City
Kingston
State
RI
Country
United States
Zip Code
02881
Hahn, Mark E; Karchner, Sibel I; Merson, Rebeka R (2017) Diversity as Opportunity: Insights from 600 Million Years of AHR Evolution. Curr Opin Toxicol 2:58-71
Preiss, Matthew R; Cournoyer, Eily; Paquin, Karissa L et al. (2017) Tuning the Multifunctionality of Iron Oxide Nanoparticles Using Self-Assembled Mixed Lipid Layers. Bioconjug Chem 28:2729-2736
Taylor, David L; Williamson, Patrick R (2017) Mercury contamination in Southern New England coastal fisheries and dietary habits of recreational anglers and their families: Implications to human health and issuance of consumption advisories. Mar Pollut Bull 114:144-156
Tiwari, Rakesh K; Brown, Alex; Sadeghiani, Neda et al. (2017) Design, Synthesis, and Evaluation of Dasatinib-Amino Acid and Dasatinib-Fatty Acid Conjugates as Protein Tyrosine Kinase Inhibitors. ChemMedChem 12:86-99
Wan, Jerry; Lin, Fuquan; Zhang, Wei et al. (2017) Novel approaches to vitiligo treatment via modulation of mTOR and NF-?B pathways in human skin melanocytes. Int J Biol Sci 13:391-400
Malloy, Thomas E; Kinney, Lorin (2017) Implications for the Self Determine Benevolence and Self-Protection in Intergroup Relations. Self Identity 16:171-193
Vierra, David A; Garzon, Jada L; Rego, Meghan A et al. (2017) Modulation of the Fanconi anemia pathway via chemically induced changes in chromatin structure. Oncotarget 8:76443-76457
Zhang, Jiyong; Klufas, Daniel; Manalo, Karina et al. (2016) HMGB1 Translocation After Ischemia in the Ovine Fetal Brain. J Neuropathol Exp Neurol 75:527-38
Donepudi, Ajay C; Cheng, Qiuqiong; Lu, Zhenqiang James et al. (2016) Hepatic Transporter Expression in Metabolic Syndrome: Phenotype, Serum Metabolic Hormones, and Transcription Factor Expression. Drug Metab Dispos 44:518-26
Ma, Hang; Liu, Weixi; Frost, Leslie et al. (2016) Glucitol-core containing gallotannins inhibit the formation of advanced glycation end-products mediated by their antioxidant potential. Food Funct 7:2213-22

Showing the most recent 10 out of 370 publications