This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff. Causes of knee OA are unknown, but it is likely that biomechanical factors contribute to abnormal loading on the affected cartilage and bone. Effective non-surgical interventions are limited and may include strengthening, exercise and use of a cane or orthotic, but muscle activity may be the most significant modifiable factor. The proposed study is designed to investigate muscle forces and coordination strategies during gait in individuals with age-related osteoarthritis of the knee. This will be done thought a combination of MRI, gait analysis, electromyography, and biomechanical modeling and simulation. This project will build upon the clinical foundation projected by project #4, which takes a clinical approach to explore the progression of OA following TKA. Dr. Buchanan will serve as scientific mentor and Dr. Snyder-Mackler will be career mentor.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Exploratory Grants (P20)
Project #
5P20RR016458-10
Application #
8359772
Study Section
Special Emphasis Panel (ZRR1-RI-5 (01))
Project Start
2011-06-01
Project End
2012-07-31
Budget Start
2011-06-01
Budget End
2013-05-31
Support Year
10
Fiscal Year
2011
Total Cost
$237,528
Indirect Cost
Name
University of Delaware
Department
Biomedical Engineering
Type
Schools of Engineering
DUNS #
059007500
City
Newark
State
DE
Country
United States
Zip Code
19716
Wellsandt, Elizabeth; Khandha, Ashutosh; Manal, Kurt et al. (2017) Predictors of knee joint loading after anterior cruciate ligament reconstruction. J Orthop Res 35:651-656
Rehmann, Matthew S; Luna, Jesus I; Maverakis, Emanual et al. (2016) Tuning microenvironment modulus and biochemical composition promotes human mesenchymal stem cell tenogenic differentiation. J Biomed Mater Res A 104:1162-74
Pozzi, Federico; Marmon, Adam R; Snyder-Mackler, Lynn et al. (2016) Lower leg compensatory strategies during performance of a step up and over task in patient six-months after total knee arthroplasty. Gait Posture 49:41-46
Moore, A C; DeLucca, J F; Elliott, D M et al. (2016) Quantifying Cartilage Contact Modulus, Tension Modulus, and Permeability With Hertzian Biphasic Creep. J Tribol 138:0414051-414057
Abujaber, Sumayeh; Gillispie, Gregory; Marmon, Adam et al. (2015) Validity of the Nintendo Wii Balance Board to assess weight bearing asymmetry during sit-to-stand and return-to-sit task. Gait Posture 41:676-82
Zimmerman, B K; Bonnevie, E D; Park, M et al. (2015) Role of interstitial fluid pressurization in TMJ lubrication. J Dent Res 94:85-92
Moore, A C; Zimmerman, B K; Chen, X et al. (2015) Experimental characterization of biphasic materials using rate-controlled Hertzian indentation. Tribol Int 89:2-8
Moore, A C; Burris, D L (2015) Tribological and material properties for cartilage of and throughout the bovine stifle: support for the altered joint kinematics hypothesis of osteoarthritis. Osteoarthritis Cartilage 23:161-9
Pozzi, Federico; Snyder-Mackler, Lynn; Zeni Jr, Joseph (2015) Relationship between biomechanical asymmetries during a step up and over task and stair climbing after total knee arthroplasty. Clin Biomech (Bristol, Avon) 30:78-85
Aravindan, Rolands G; Kirn-Safran, Catherine B; Smith, Michelle A et al. (2014) Ultrastructural changes and asthenozoospermia in murine spermatozoa lacking the ribosomal protein L29/HIP gene. Asian J Androl 16:925-6

Showing the most recent 10 out of 133 publications