This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff. Diabetic chronic foot ulceration represents a major medical, social, and economic problem. It is the leading cause of lower extremity amputations. Key features of the non-healing ulcer in diabetic patients are persistent inflammation and impaired blood vessel regeneration (angiogenesis). Angiogenesis is a complex physiological process that requires normal functions and properly orchestrated interaction between macrophages and endothelial cells (ECs). In diabetic chronic ulcer, those cellular activities and functions are impaired. The biochemical and cellular mechanisms underlying their dysfunction and the possible altered macrophage-endothelial (macrophage-EC) cell interactions in impaired angiogenesis are poorly understood, primarily due to the lack of an in vitro wound-healing angiogenesis model. Consequently, the lack of knowledge of the mechanisms responsible for the pathologies of chronic wound healing such as diabetic ulcer hampers the efforts to develop new therapies and the corresponding molecular targets for intervention. Macrophages play critical roles in wound angiogenesis by secreting multiple cytokines and growth factors including hypoxia inducible factor 1 alpha (HIF-1a). HIF-1a is essential for initiating angiogenesis by inducing the expression of multiple angiogenic factors including VEGF, Flk 1, and NOS. We hypothesize that HIF-1 is a critical regulator of the response of macrophages in diabetic ulceration and for angiogenesis in diabetic wound healing. In order to test our hypothesis, our objective for this summer project is to develop a macrophage-EC co-culture system as an in vitro dermal wound angiogenesis model.
Specific Aim 1 : Develop and characterize a macrophage-EC co-culture system. We will use a Transwell system to establish a macrophage-EC co-culture by growing dermal endothelial cells on the permeable support of the upper chamber and macrophages in the bottom well of the same Transwell system. In such system, there is no direct contact between macrophages and ECs, but their communications are facilitated by growth factors or cytokines secreted by those cells ?mimicking the in vivo environment where there is no direct contact between these two cell types. We will evaluate the effect of cell co-culture on cell proliferation and cytokine expression (including HIF-1a and VEGF).
Specific Aim 2 : Evaluate the feasibility of using the macrophage-EC co-culture system as an in vitro dermal angiogenesis model. We will challenge this co-culture system by inducing an inflammatory as well as a hypoxic state to mimic the wound microenvironment. We will evaluate the cell activities (proliferation, survival) and cytokine expression (HIF-1a and VEGF) under these conditions. The INBRE summer program will enable a productive collaboration between the applicant and her mentor to allow development of a highly needed in vitro dermal wound angiogenesis model. This dermal wound angiogenesis model will provide a robust system to conduct mechanistic studies such as to investigate the effect of the microenvironment of a diabetic wound on the HIF-1-VEGF signaling pathway between macrophages and endothelial cells. The preliminary data obtained from this research will be used for a grant proposal to NIH as well as to obtain research support from her home institution. UCA is an undergraduate institution and Dr. Wang has engaged eight undergraduate students in her research during past 3 years. Therefore, support through this fellowship mechanism will likely also lead to enhancing research opportunities for undergraduate students.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Exploratory Grants (P20)
Project #
5P20RR016460-10
Application #
8359818
Study Section
Special Emphasis Panel (ZRR1-RI-7 (01))
Project Start
2011-05-01
Project End
2012-04-30
Budget Start
2011-05-01
Budget End
2012-04-30
Support Year
10
Fiscal Year
2011
Total Cost
$26,402
Indirect Cost
Name
University of Arkansas for Medical Sciences
Department
Physiology
Type
Schools of Medicine
DUNS #
122452563
City
Little Rock
State
AR
Country
United States
Zip Code
72205
Allison, Devin; Delancey, Evan; Ramey, Hunter et al. (2017) Synthesis and antimicrobial studies of novel derivatives of 4-(4-formyl-3-phenyl-1H-pyrazol-1-yl)benzoic acid as potent anti-Acinetobacter baumannii agents. Bioorg Med Chem Lett 27:387-392
MacNicol, Melanie C; Cragle, Chad E; McDaniel, F Kennedy et al. (2017) Evasion of regulatory phosphorylation by an alternatively spliced isoform of Musashi2. Sci Rep 7:11503
Gao, Bo; Li, Guojun; Liu, Juntao et al. (2017) Identification of driver modules in pan-cancer via coordinating coverage and exclusivity. Oncotarget 8:36115-36126
Rahmatallah, Yasir; Zybailov, Boris; Emmert-Streib, Frank et al. (2017) GSAR: Bioconductor package for Gene Set analysis in R. BMC Bioinformatics 18:61
Liu, Juntao; Li, Guojun; Chang, Zheng et al. (2016) BinPacker: Packing-Based De Novo Transcriptome Assembly from RNA-seq Data. PLoS Comput Biol 12:e1004772
Luo, Heng; Ye, Hao; Ng, Hui Wen et al. (2016) sNebula, a network-based algorithm to predict binding between human leukocyte antigens and peptides. Sci Rep 6:32115
Yu, Alexander; Demirel, Doga; Halic, Tansel et al. (2016) Virtual Intraoperative Cholangiogram Using WebCL. Stud Health Technol Inform 220:459-64
Wang, Zhenjia; Li, Guojun; Robinson, Robert W et al. (2016) UniBic: Sequential row-based biclustering algorithm for analysis of gene expression data. Sci Rep 6:23466
Rahmatallah, Yasir; Emmert-Streib, Frank; Glazko, Galina (2016) Gene set analysis approaches for RNA-seq data: performance evaluation and application guideline. Brief Bioinform 17:393-407
Beckford, Floyd A; Brock, Alyssa; Gonzalez-SarrĂ­as, Antonio et al. (2016) Cytotoxic gallium complexes containing thiosemicarbazones derived from 9-anthraldehyde: Molecular docking with biomolecules. J Mol Struct 1121:156-166

Showing the most recent 10 out of 223 publications