The Vermont IDeA Network for Biomedical Research Excellence (INBRE) is the Vermont Genetics Network (VGN). We build biomedical research capacity throughout the state by promoting faculty and Student research at our Baccalaureate Partner Institutions (BPIs) with research awards and renovations;reaching out to BPIs and other colleges with delivery of curriculum modules for students to have hands-on opportunities to carry out realistic research protocols and use VGN's facilities;developing Microarray and Proteomics facilities that serve the entire network;providing Bioinformatics services;supporting new faculty and graduate students at the University of Vermont (UVM). Our assessments show our faculty at both BPIs and UVM are publishing, applying for extramural funding and becoming competitive for this funding. Our facilities support the entire network. We use the theme of Genetics because it allows for inclusion of many kinds of biomedical research at UVM and BPIs and promotes a broad network. VGN has four current specific aims: 1. Build a Culture of Research at the BPIs;2. Establish an Outreach Core for institutions outside our network;3. Strengthen the Research Capacity and Critical Mass of Genetics Biomedical Researchers at UVM;4. Assess the progress through longitudinal studies. Over four years, we have made substantial progress toward all of these aims. VGN has become a leader in promoting research resources and building consortia among the Bioinformatics Cores. VGN has changed the attitude in colleges toward UVM that now is considered a welcoming place for college faculty and student research. In this application for renewal of funding for VGN, we have five Specific Aims: 1. Expand the network to include more BPIs and develop cultures of research at these new and current BPIs. 2. Expand education outreach to more colleges, including the Community College of Vermont (CCV). 3. Focus research capacity building for the state and region on Proteomics and provide state-of-the-art Microarray services. This includes the provision of Bioinformatics services that are critical for the Proteomics and Microarray facilities. 4. Expand our regional and national efforts to share research resources. 5. Assess the progress of VGN through a new set of evaluation tools. New proposed aspects of our application include an expanded workforce development effort through an expanded network of BPIs and inclusion of CCV in our outreach program. We will increase our emphasis on facilities and services in Proteomics, Microarray and Bioinformatics and promote regional and national sharing of research resources. A Logic Model and Output Time line for assessment will be important additions to our evaluation plan.

Public Health Relevance

These plans will increase biomedical research capacity in Vermont by strengthening an existing network among the institutions of higher education, increase student interest in the biomedical sciences and enhance the biomedical workforce and its diversity, improve biomedical research facilities and resource sharing among IDeA programs and more broadly.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Exploratory Grants (P20)
Project #
5P20RR016462-10
Application #
8115193
Study Section
Special Emphasis Panel (ZRR1-RI-7 (01))
Program Officer
Canto, Maria Teresa
Project Start
2001-09-30
Project End
2015-05-31
Budget Start
2011-06-01
Budget End
2012-05-31
Support Year
10
Fiscal Year
2011
Total Cost
$3,220,036
Indirect Cost
Name
University of Vermont & St Agric College
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
066811191
City
Burlington
State
VT
Country
United States
Zip Code
05405
Spritzer, M D; Curtis, M G; DeLoach, J P et al. (2016) Sexual interactions with unfamiliar females reduce hippocampal neurogenesis among adult male rats. Neuroscience 318:143-56
Hinkle, Karen L; Anderson, Chad C; Forkey, Blake et al. (2016) Exposure to the lampricide 3-trifluoromethyl-4-nitrophenol results in increased expression of carbohydrate transporters in Saccharomyces cerevisiae. Environ Toxicol Chem 35:1727-32
Nock, Adam M; Wargo, Matthew J (2016) Choline Catabolism in Burkholderia thailandensis Is Regulated by Multiple Glutamine Amidotransferase 1-Containing AraC Family Transcriptional Regulators. J Bacteriol 198:2503-14
Symeonides, Menelaos; Murooka, Thomas T; Bellfy, Lauren N et al. (2015) HIV-1-Induced Small T Cell Syncytia Can Transfer Virus Particles to Target Cells through Transient Contacts. Viruses 7:6590-603
Xie, Yi; Jin, Yu; Merenick, Bethany L et al. (2015) Phosphorylation of GATA-6 is required for vascular smooth muscle cell differentiation after mTORC1 inhibition. Sci Signal 8:ra44
Case, Laure K; Wall, Emma H; Osmanski, Erin E et al. (2015) Copy number variation in Y chromosome multicopy genes is linked to a paternal parent-of-origin effect on CNS autoimmune disease in female offspring. Genome Biol 16:28
Perkins, Timothy N; Peeters, Paul M; Shukla, Arti et al. (2015) Indications for distinct pathogenic mechanisms of asbestos and silica through gene expression profiling of the response of lung epithelial cells. Hum Mol Genet 24:1374-89
Kirshenbaum, Ari; Green, John; Fay, Michael et al. (2015) Reinforcer devaluation as a consequence of acute nicotine exposure and withdrawal. Psychopharmacology (Berl) 232:1583-94
Bentley, P A; Wall, E H; Dahl, G E et al. (2015) Responses of the mammary transcriptome of dairy cows to altered photoperiod during late gestation. Physiol Genomics 47:488-99
Mireault, Gina C; Crockenberg, Susan C; Sparrow, John E et al. (2015) Laughing matters: Infant humor in the context of parental affect. J Exp Child Psychol 136:30-41

Showing the most recent 10 out of 173 publications