This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff. Metabolic homeostasis, or the ability to closely match energy production with demand, is a fundamental requirement for the health and normal functioning of the cells, tissues, and organs of the body. Therefore, several technologies have been developed to assess cellular energy production. Optical imaging modalities are particularly attractive, because light is minimally invasive, easily delivered to the various tissues of the body, and capable of providing rapid feedback with high spatial resolution. One approach to characterizing the metabolic state has been to use the intrinsic fluorescence emission from the reduced form of nicotinamide adenine dinucleotide (NADH) and flavoproteins that directly participate in mitochondrial energy production. This has been extensively applied to a variety of tissues and has been instrumental in the development of our current understanding of the regulation and maintenance of the metabolic state. However, interpreting the observed changes in tissue fluorescence can be problematic, often requiring assumptions or the need of additional measurements for effective application. Traditionally, metabolic imaging has employed fluorescence intensity as a surrogate for the concentration of electron donors to the respiratory chain. Recent studies, however, have shown that these measurements of fluorophore concentration may be error prone. Fundamentally, this is because the fluorescence intensity is dependent on the local environment of the fluorophore and is properly expressed as a product of both the fluorophore's lifetime and concentration. Since lifetime changes can also occur as a result of changes in the ratio of the free to enzyme-bound fluorophores populations, changes in intensity are difficult to interpret. Other studies have suggested that NADH fluorescence lifetime imaging (FLIM) may provide a more accurate measurement of cellular energetics. While FLIM is a promising, novel alternative, it has yet to be properly evaluated in well controlled, yet realistic cellular environments. Using easily manipulated yet relevant in vitro cultures, we propose to systematically compare measurements of the cellular metabolic state obtained from NADH FLIM with the traditional assessment made using fluorescence intensity alone. By establishing the advantages and limitations of this new technique, we will be able to properly deploy metabolic imaging techniques to better characterize, diagnose and develop treatment interventions for a broad range of human disease.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Exploratory Grants (P20)
Project #
5P20RR016469-11
Application #
8360017
Study Section
Special Emphasis Panel (ZRR1-RI-4 (01))
Project Start
2011-05-01
Project End
2012-04-30
Budget Start
2011-05-01
Budget End
2012-04-30
Support Year
11
Fiscal Year
2011
Total Cost
$14,302
Indirect Cost
Name
University of Nebraska Medical Center
Department
Genetics
Type
Schools of Medicine
DUNS #
168559177
City
Omaha
State
NE
Country
United States
Zip Code
68198
Gerald, Gary W; Thompson, Moriah M; Levine, Todd D et al. (2017) Interactive effects of leg autotomy and incline on locomotor performance and kinematics of the cellar spider, Pholcus manueli. Ecol Evol 7:6729-6735
Gong, Qiang; Wang, Chao; Zhang, Weiwei et al. (2017) Assessment of T-cell receptor repertoire and clonal expansion in peripheral T-cell lymphoma using RNA-seq data. Sci Rep 7:11301
Bouska, A; Zhang, W; Gong, Q et al. (2017) Combined copy number and mutation analysis identifies oncogenic pathways associated with transformation of follicular lymphoma. Leukemia 31:83-91
Lu, Guoqing; Luhr, Jamie; Stoecklein, Andrew et al. (2017) Complete Genome Sequences of Pseudomonas fluorescens Bacteriophages Isolated from Freshwater Samples in Omaha, Nebraska. Genome Announc 5:
Azadmanesh, Jahaun; Trickel, Scott R; Borgstahl, Gloria E O (2017) Substrate-analog binding and electrostatic surfaces of human manganese superoxide dismutase. J Struct Biol 199:68-75
Donze-Reiner, Teresa; Palmer, Nathan A; Scully, Erin D et al. (2017) Transcriptional analysis of defense mechanisms in upland tetraploid switchgrass to greenbugs. BMC Plant Biol 17:46
Quispe, Cristian F; Esmael, Ahmed; Sonderman, Olivia et al. (2017) Characterization of a new chlorovirus type with permissive and non-permissive features on phylogenetically related algal strains. Virology 500:103-113
Carlson, Kimberly A; Zhang, Chi; Harshman, Lawrence G (2016) A dataset for assessing temporal changes in gene expression during the aging process of adult Drosophila melanogaster. Data Brief 7:1652-7
Tietze, S M; Gerald, G W (2016) Trade-offs between salinity preference and antipredator behaviour in the euryhaline sailfin molly Poecilia latipinna. J Fish Biol 88:1918-31
Ericson, Brad L; Carlson, Darby J; Carlson, Kimberly A (2016) Characterization of Nora Virus Structural Proteins via Western Blot Analysis. Scientifica (Cairo) 2016:9067848

Showing the most recent 10 out of 316 publications