This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff. The nervous system was once considered to be """"""""immune privileged"""""""" and isolated from immune system activity. However, a preponderance of evidence indicates that proper development and function of the central nervous system (CNS) relies on regulated interactions between nervous system and immune cells. Microglia are the resident immune cells of the CNS and respond rapidly to changes in the CNS environment. Microglia exhibit phagocytic activity following neuronal damage. Activated microglia produce neurotoxic molecules including inflammatory cytokines, chemokines, arachidonic acid, reactive oxygen and nitrogen species, and growth inhibiting proteins such as prostaglandins (Kim and Vellis, 2005;Lai and Todd, 2006). Conversely, emerging evidence suggests that, given specific activator(s), microglia may function to support neuronal survival, differentiation and potentially regeneration. Both in vitro and in vivo studies have shown that microglia produce neurotrophic factors such as nerve growth factor (NGF), neurotrophin 3 (NT3), and brain-derived neurotrophic factor (BDNF) (Kim and de Vellis, 2005;Morgan et al., 2004). Additional experiments have demonstrated that co-cultures of neurons and microglia increase neurogenesis in neural progenitor cells (Walton et al., 2006). Little is known about whether activated microglia are capable of producing neurotrophic effects in damaged neurons and which signaling and epigenetic mechanisms underlie these processes. Previous experiments have suggested that the PI3K/AKT and MAPK pathways could act as potential signaling mechanisms and it is likely that regulation of microglial signaling pathways determine their neurotrophic or neurotoxic phenotype. To investigate the signaling mechanisms and gene regulation involved in the immune response to neuronal damage, this proposal presents an in vitro model system employing state-of-the-art technology that is readily accessible to and utilized by undergraduate research students. Increasing our understanding of the mechanisms that drive neurotrophic verses neurotoxic phenotypes in microglia will provide insight into the intrinsic neuroprotective role of immune activity in the CNS and may aid in the development of methodologies to promote such activity during neurodegenerative disease or regeneration following injury.

National Institute of Health (NIH)
National Center for Research Resources (NCRR)
Exploratory Grants (P20)
Project #
Application #
Study Section
Special Emphasis Panel (ZRR1-RI-4 (01))
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Nebraska Medical Center
Schools of Medicine
United States
Zip Code
Gerald, Gary W; Thompson, Moriah M; Levine, Todd D et al. (2017) Interactive effects of leg autotomy and incline on locomotor performance and kinematics of the cellar spider, Pholcus manueli. Ecol Evol 7:6729-6735
Gong, Qiang; Wang, Chao; Zhang, Weiwei et al. (2017) Assessment of T-cell receptor repertoire and clonal expansion in peripheral T-cell lymphoma using RNA-seq data. Sci Rep 7:11301
Bouska, A; Zhang, W; Gong, Q et al. (2017) Combined copy number and mutation analysis identifies oncogenic pathways associated with transformation of follicular lymphoma. Leukemia 31:83-91
Lu, Guoqing; Luhr, Jamie; Stoecklein, Andrew et al. (2017) Complete Genome Sequences of Pseudomonas fluorescens Bacteriophages Isolated from Freshwater Samples in Omaha, Nebraska. Genome Announc 5:
Azadmanesh, Jahaun; Trickel, Scott R; Borgstahl, Gloria E O (2017) Substrate-analog binding and electrostatic surfaces of human manganese superoxide dismutase. J Struct Biol 199:68-75
Donze-Reiner, Teresa; Palmer, Nathan A; Scully, Erin D et al. (2017) Transcriptional analysis of defense mechanisms in upland tetraploid switchgrass to greenbugs. BMC Plant Biol 17:46
Quispe, Cristian F; Esmael, Ahmed; Sonderman, Olivia et al. (2017) Characterization of a new chlorovirus type with permissive and non-permissive features on phylogenetically related algal strains. Virology 500:103-113
Carlson, Kimberly A; Zhang, Chi; Harshman, Lawrence G (2016) A dataset for assessing temporal changes in gene expression during the aging process of adult Drosophila melanogaster. Data Brief 7:1652-7
Tietze, S M; Gerald, G W (2016) Trade-offs between salinity preference and antipredator behaviour in the euryhaline sailfin molly Poecilia latipinna. J Fish Biol 88:1918-31
Ericson, Brad L; Carlson, Darby J; Carlson, Kimberly A (2016) Characterization of Nora Virus Structural Proteins via Western Blot Analysis. Scientifica (Cairo) 2016:9067848

Showing the most recent 10 out of 316 publications