This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff. Infectious disease has been a historic and problematic condition for humans for centuries. Prior to 1943, a simple scratch from a rose bush could quite literally lead to a systemic bacterial infection and, ultimately, death of the patient. Howard Florey and the Oxford Team ushered in a new era of medicine with the industrial production of penicillin. Where, previously, hospital septic wards housed patients waiting to die, the same institutions became centers of healing and curing (Lax 2004). Today antibiotics are the established norm in our approach to medical treatment. One result of the availability of cheap antibiotics has, unfortunately, been their universal use throughout the medical community and in the agricultural sector. This over exploitation has inevitably led to resistance in the target microbial populations. As antibiotic resistance becomes more pronounced and established as a medical fact, it is critical to search for organisms that produce potentially beneficial antimicrobial compounds. Naturally, many of these uses will target bacteria but one can also expect that other beneficial compounds (e.g., antifungal, antimalarial, and anticancer agents) will be identified during this search.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Exploratory Grants (P20)
Project #
5P20RR016469-11
Application #
8360028
Study Section
Special Emphasis Panel (ZRR1-RI-4 (01))
Project Start
2011-05-01
Project End
2012-04-30
Budget Start
2011-05-01
Budget End
2012-04-30
Support Year
11
Fiscal Year
2011
Total Cost
$39,984
Indirect Cost
Name
University of Nebraska Medical Center
Department
Genetics
Type
Schools of Medicine
DUNS #
168559177
City
Omaha
State
NE
Country
United States
Zip Code
68198
Gerald, Gary W; Thompson, Moriah M; Levine, Todd D et al. (2017) Interactive effects of leg autotomy and incline on locomotor performance and kinematics of the cellar spider, Pholcus manueli. Ecol Evol 7:6729-6735
Gong, Qiang; Wang, Chao; Zhang, Weiwei et al. (2017) Assessment of T-cell receptor repertoire and clonal expansion in peripheral T-cell lymphoma using RNA-seq data. Sci Rep 7:11301
Bouska, A; Zhang, W; Gong, Q et al. (2017) Combined copy number and mutation analysis identifies oncogenic pathways associated with transformation of follicular lymphoma. Leukemia 31:83-91
Lu, Guoqing; Luhr, Jamie; Stoecklein, Andrew et al. (2017) Complete Genome Sequences of Pseudomonas fluorescens Bacteriophages Isolated from Freshwater Samples in Omaha, Nebraska. Genome Announc 5:
Azadmanesh, Jahaun; Trickel, Scott R; Borgstahl, Gloria E O (2017) Substrate-analog binding and electrostatic surfaces of human manganese superoxide dismutase. J Struct Biol 199:68-75
Donze-Reiner, Teresa; Palmer, Nathan A; Scully, Erin D et al. (2017) Transcriptional analysis of defense mechanisms in upland tetraploid switchgrass to greenbugs. BMC Plant Biol 17:46
Quispe, Cristian F; Esmael, Ahmed; Sonderman, Olivia et al. (2017) Characterization of a new chlorovirus type with permissive and non-permissive features on phylogenetically related algal strains. Virology 500:103-113
Carlson, Kimberly A; Zhang, Chi; Harshman, Lawrence G (2016) A dataset for assessing temporal changes in gene expression during the aging process of adult Drosophila melanogaster. Data Brief 7:1652-7
Tietze, S M; Gerald, G W (2016) Trade-offs between salinity preference and antipredator behaviour in the euryhaline sailfin molly Poecilia latipinna. J Fish Biol 88:1918-31
Ericson, Brad L; Carlson, Darby J; Carlson, Kimberly A (2016) Characterization of Nora Virus Structural Proteins via Western Blot Analysis. Scientifica (Cairo) 2016:9067848

Showing the most recent 10 out of 316 publications