This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff. Toxoplasma gondii is a zoonotic human parasite with worldwide distribution. In addition to its classical association with fetal malformation (a leading cause of congenital neuropathy, affecting 1/1000 live births in the US) and abortion, toxoplasmosis also afflicts the growing ranks of immunocompromised individuals (cancer and transplant patients). Primary infection (acquired via ingestion of cysts in contam?inated water, soil, or under?cooked meat) leads to an initial systemic spread of tachyzoite parasites with mild to no symptoms, which mature into bradyzoite tissue cysts 1 week post-infection. In contrast to primary maternal infection which strongly affects the fetus, disease in the immunosuppressed patient population is primarily due to reactivation of dormant bradyzoite cysts residing in patient tissues and can lead to significant morbidity. Approximately 30% of the U.S. population is chronically infected with T. gondii, and harbor chemo- and immuno-resistant bradyzoite cysts within their tissues, particularly brain and muscle. Published studies have suggested that lifelong infection may produce psychological phenotypes in humans;however, there is no known treatment for the chronic bradyzoite stage of infection. Very recently, we have published a study of non-proprietary compounds active against intracellular Toxoplasma gondii tachyzoite growth;however, we have not established their mechanism of action. Moreover, the effect of these compounds on the bradyzoite cysts remains untested. Therefore, we propose to investigate the mechanism of action for these early lead anti-Toxoplasma compounds, and investigate the effect these compounds exert on bradyzoite cysts. We will investigator the following specific aims:
Specific Aim 1 : Predict the likely mechanism of action of early lead anti-Toxoplasma compounds.
Specific Aim 2 : Assess the killing efficacy of early lead compounds against Toxoplasma gondii bradyzoites.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Exploratory Grants (P20)
Project #
5P20RR016469-11
Application #
8360033
Study Section
Special Emphasis Panel (ZRR1-RI-4 (01))
Project Start
2011-05-01
Project End
2012-04-30
Budget Start
2011-05-01
Budget End
2012-04-30
Support Year
11
Fiscal Year
2011
Total Cost
$68,146
Indirect Cost
Name
University of Nebraska Medical Center
Department
Genetics
Type
Schools of Medicine
DUNS #
168559177
City
Omaha
State
NE
Country
United States
Zip Code
68198
Barta, Cody L; Liu, Huizhan; Chen, Lei et al. (2018) RNA-seq transcriptomic analysis of adult zebrafish inner ear hair cells. Sci Data 5:180005
Liu, Huizhan; Chen, Lei; Giffen, Kimberlee P et al. (2018) Cell-Specific Transcriptome Analysis Shows That Adult Pillar and Deiters' Cells Express Genes Encoding Machinery for Specializations of Cochlear Hair Cells. Front Mol Neurosci 11:356
Wehrkamp, Cody J; Natarajan, Sathish Kumar; Mohr, Ashley M et al. (2018) miR-106b-responsive gene landscape identifies regulation of Kruppel-like factor family. RNA Biol 15:391-403
Lopez, Wilfredo; Page, Alexis M; Carlson, Darby J et al. (2018) Analysis of immune-related genes during Nora virus infection of Drosophila melanogaster using next generation sequencing. AIMS Microbiol 4:123-139
Gong, Qiang; Wang, Chao; Zhang, Weiwei et al. (2017) Assessment of T-cell receptor repertoire and clonal expansion in peripheral T-cell lymphoma using RNA-seq data. Sci Rep 7:11301
Lu, Guoqing; Luhr, Jamie; Stoecklein, Andrew et al. (2017) Complete Genome Sequences ofPseudomonas fluorescensBacteriophages Isolated from Freshwater Samples in Omaha, Nebraska. Genome Announc 5:
Azadmanesh, Jahaun; Trickel, Scott R; Weiss, Kevin L et al. (2017) Preliminary neutron diffraction analysis of challenging human manganese superoxide dismutase crystals. Acta Crystallogr F Struct Biol Commun 73:235-240
Bouska, A; Zhang, W; Gong, Q et al. (2017) Combined copy number and mutation analysis identifies oncogenic pathways associated with transformation of follicular lymphoma. Leukemia 31:83-91
Azadmanesh, Jahaun; Trickel, Scott R; Borgstahl, Gloria E O (2017) Substrate-analog binding and electrostatic surfaces of human manganese superoxide dismutase. J Struct Biol 199:68-75
Bonham-Carter, Oliver; Thapa, Ishwor; From, Steven et al. (2017) A study of bias and increasing organismal complexity from their post-translational modifications and reaction site interplays. Brief Bioinform 18:69-84

Showing the most recent 10 out of 322 publications