This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. Cells in the nervous system use intercellular signaling cues extensively to properly the extend neurites, navigate to and recognize target cells and form and maintain synaptic contacts. The ability to predict secreted proteins from whole genomes has led to the conclusion that perhaps as much as one third of all proteins encoded are secreted into the extracellular space. Given the complexity of nervous systems it stands to reason that many of these secreted proteins act in the patterning of the nervous system. We have generated a library of predicted secreted proteins from the C. elegans genome. We will take a systematic approach using RNA interference (RNAi) to knockdown of all 7,460 predicted secreted proteins and evaluate the effect of this RNAi on multiple aspects of neural development. A preliminary characterization will be done to identify molecules that have an effect on neuronal patterning, and a secondary level quantitative analysis will be done on those molecules. We are using a synthetic lethal screening approach to characterize these molecules first, and then we will examine the outgrowth and synaptic morphology in mutants for genes that demonstrate an effect. Understanding how the nervous system is patterned has long been a goal of neurobiology. A multitude of studies have demonstrated the importance of extracellular proteins on all aspects of neuronal development. The ability to systematically evaluate the effect of loss of function of all secreted proteins has only recently become available. This will provide many novel insights into an extremely complicated part of development.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Exploratory Grants (P20)
Project #
5P20RR016475-10
Application #
8167525
Study Section
Special Emphasis Panel (ZRR1-RI-4 (01))
Project Start
2010-05-01
Project End
2011-04-30
Budget Start
2010-05-01
Budget End
2011-04-30
Support Year
10
Fiscal Year
2010
Total Cost
$121,390
Indirect Cost
Name
University of Kansas
Department
Anatomy/Cell Biology
Type
Schools of Medicine
DUNS #
016060860
City
Kansas City
State
KS
Country
United States
Zip Code
66160
Haimov, Ora; Sehrawat, Urmila; Tamarkin-Ben Harush, Ana et al. (2018) Dynamic interactions of eIF4G1 with eIF4E and eIF1 underlie scanning dependent and independent translation. Mol Cell Biol :
Murakami, Ryo; Singh, Chingakham Ranjit; Morris, Jacob et al. (2018) The Interaction between the Ribosomal Stalk Proteins and Translation Initiation Factor 5B Promotes Translation Initiation. Mol Cell Biol 38:
Paper, Janet M; Mukherjee, Thiya; Schrick, Kathrin (2018) Bioorthogonal click chemistry for fluorescence imaging of choline phospholipids in plants. Plant Methods 14:31
McCarson, Kenneth E; Winter, Michelle K; Abrahamson, Dale R et al. (2018) Assessing complex movement behaviors in rodent models of neurological disorders. Neurobiol Learn Mem :
Rettig, Trisha A; Ward, Claire; Bye, Bailey A et al. (2018) Characterization of the naive murine antibody repertoire using unamplified high-throughput sequencing. PLoS One 13:e0190982
Arisz, Steven A; Heo, Jae-Yun; Koevoets, Iko T et al. (2018) DIACYLGLYCEROL ACYLTRANSFERASE1 Contributes to Freezing Tolerance. Plant Physiol 177:1410-1424
Lee, Sungsu; Cheung-See-Kit, Melanie; Williams, Tyler A et al. (2018) The glycosomal alkyl-dihydroxyacetonephosphate synthase TbADS is essential for the synthesis of ether glycerophospholipids in procyclic trypanosomes. Exp Parasitol 185:71-78
Ishiguro, Susumu; Kawabata, Atsushi; Zulbaran-Rojas, Alejandro et al. (2018) Co-treatment with a C1B5 peptide of protein kinase C? and a low dose of gemcitabine strongly attenuated pancreatic cancer growth in mice through T cell activation. Biochem Biophys Res Commun 495:962-968
Lee, Soon Goo; Jez, Joseph M (2017) Conformational changes in the di-domain structure of Arabidopsis phosphoethanolamine methyltransferase leads to active-site formation. J Biol Chem 292:21690-21702
Pook, Victoria G; Nair, Meera; Ryu, KookHui et al. (2017) Positioning of the SCRAMBLED receptor requires UDP-Glc:sterol glucosyltransferase 80B1 in Arabidopsis roots. Sci Rep 7:5714

Showing the most recent 10 out of 651 publications