This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff. The working hypothesis of this proposal is that the consumption of AmED may be riskier than alcohol consumption alone. Mixing alcohol with another beverage with strong stimulant properties may decrease self?perceptions of intoxication and may increase the reinforcing properties of alcohol. In addition, the acute effects of alcohol impair impulse control, and this impairment may not be counteracted by co-administration of a stimulant. The proposed research will examine the acute effects of alcohol, energy drinks, AmED or a placebo beverage in social drinkers. The effects of these beverages will be determined by performance on tasks that measure neurocognitive control mechanisms and the subjective effects of alcohol.
The specific aims of the proposed research are: 1) to determine whether the consumption of AmED alters neurocognitive and subjective measures of intoxication compared to the consumption of alcohol alone, and 2) to establish whether the consumption of AmED enhances priming of the motivation to drink alcohol compared with the consumption of alcohol alone. The results of these studies should elucidate whether the consumption of AmED increases alcohol consumption and may be escalating binge drinking in young people.

National Institute of Health (NIH)
National Center for Research Resources (NCRR)
Exploratory Grants (P20)
Project #
Application #
Study Section
Special Emphasis Panel (ZRR1-RI-4 (01))
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Louisville
Anatomy/Cell Biology
Schools of Medicine
United States
Zip Code
Hofmann, Emily; Webster, Jonathan; Do, Thuy et al. (2016) Hydroxylated chalcones with dual properties: Xanthine oxidase inhibitors and radical scavengers. Bioorg Med Chem 24:578-87
Rau, Kristofer K; Hill, Caitlin E; Harrison, Benjamin J et al. (2016) Cutaneous tissue damage induces long-lasting nociceptive sensitization and regulation of cellular stress- and nerve injury-associated genes in sensory neurons. Exp Neurol 283:413-27
Rouchka, Eric C; Flight, Robert M; Fasciotto, Brigitte H et al. (2016) Transcriptional profile of immediate response to ionizing radiation exposure. Genom Data 7:82-5
Smith, Michael E; Monroe, J David (2016) Causes and Consequences of Sensory Hair Cell Damage and Recovery in Fishes. Adv Exp Med Biol 877:393-417
Harrison, Benjamin J; Venkat, Gayathri; Lamb, James L et al. (2016) The Adaptor Protein CD2AP Is a Coordinator of Neurotrophin Signaling-Mediated Axon Arbor Plasticity. J Neurosci 36:4259-75
Saikkonen, Kari; Young, Carolyn A; Helander, Marjo et al. (2016) Endophytic Epichloë species and their grass hosts: from evolution to applications. Plant Mol Biol 90:665-75
Hestand, Matthew S; Kalbfleisch, Theodore S; Coleman, Stephen J et al. (2015) Annotation of the Protein Coding Regions of the Equine Genome. PLoS One 10:e0124375
Young, Carolyn A; Schardl, Christopher L; Panaccione, Daniel G et al. (2015) Genetics, genomics and evolution of ergot alkaloid diversity. Toxins (Basel) 7:1273-302
Harrison, Benjamin J; Venkat, Gayathri; Hutson, Thomas et al. (2015) Transcriptional changes in sensory ganglia associated with primary afferent axon collateral sprouting in spared dermatome model. Genom Data 6:249-52
Stenslik, Mallory J; Potts, Lisa F; Sonne, James W H et al. (2015) Methodology and effects of repeated intranasal delivery of DNSP-11 in a rat model of Parkinson's disease. J Neurosci Methods 251:120-9

Showing the most recent 10 out of 239 publications