This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff. The Physiology Core provides functional data on animals in vivo or in situ. A critical component of translating the wealth of molecular biology research is confirming functional effects. We provide invasive and non-invasive services which allow investigators to allow for the most effective investigator support in this process. Validated echocardiography, hemodynamic, pressure-volume loop measures, and isolated perfused organ preps, and organ blood-flow measures are offered, each provide specific measures of functionality.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Exploratory Grants (P20)
Project #
5P20RR017662-09
Application #
8360547
Study Section
National Center for Research Resources Initial Review Group (RIRG)
Project Start
2011-07-01
Project End
2012-06-30
Budget Start
2011-07-01
Budget End
2012-06-30
Support Year
9
Fiscal Year
2011
Total Cost
$219,750
Indirect Cost
Name
Sanford Research/Usd
Department
Type
DUNS #
050113252
City
Sioux Falls
State
SD
Country
United States
Zip Code
57104
O'Connell, Timothy D; Block, Robert C; Huang, Shue P et al. (2017) ?3-Polyunsaturated fatty acids for heart failure: Effects of dose on efficacy and novel signaling through free fatty acid receptor 4. J Mol Cell Cardiol 103:74-92
Eclov, Julie A; Qian, Qingwen; Redetzke, Rebecca et al. (2015) EPA, not DHA, prevents fibrosis in pressure overload-induced heart failure: potential role of free fatty acid receptor 4. J Lipid Res 56:2297-308
Savinova, Olga V; Fillaus, Kristi; Harris, William S et al. (2015) Effects of niacin and omega-3 fatty acids on the apolipoproteins in overweight patients with elevated triglycerides and reduced HDL cholesterol. Atherosclerosis 240:520-5
McKenzie, Casey W; Craige, Branch; Kroeger, Tiffany V et al. (2015) CFAP54 is required for proper ciliary motility and assembly of the central pair apparatus in mice. Mol Biol Cell 26:3140-9
Kobayashi, Satoru; Liang, Qiangrong (2015) Autophagy and mitophagy in diabetic cardiomyopathy. Biochim Biophys Acta 1852:252-61
O'Connell, Timothy D; Jensen, Brian C; Baker, Anthony J et al. (2014) Cardiac alpha1-adrenergic receptors: novel aspects of expression, signaling mechanisms, physiologic function, and clinical importance. Pharmacol Rev 66:308-33
Savinova, Olga V; Fillaus, Kristi; Jing, Linhong et al. (2014) Reduced apolipoprotein glycosylation in patients with the metabolic syndrome. PLoS One 9:e104833
Jensen, Brian C; O?Connell, Timothy D; Simpson, Paul C (2014) Alpha-1-adrenergic receptors in heart failure: the adaptive arm of the cardiac response to chronic catecholamine stimulation. J Cardiovasc Pharmacol 63:291-301
Wu, Steven C; Dahl, Erika F; Wright, Casey D et al. (2014) Nuclear localization of a1A-adrenergic receptors is required for signaling in cardiac myocytes: an “inside-out” a1-AR signaling pathway. J Am Heart Assoc 3:e000145
Xu, Xianmin; Kobayashi, Satoru; Chen, Kai et al. (2013) Diminished autophagy limits cardiac injury in mouse models of type 1 diabetes. J Biol Chem 288:18077-92

Showing the most recent 10 out of 65 publications