This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff. The primary mission of the Imaging Core is to facilitate the microscopic imaging needs of Sanford Research/USD and our affiliated research institutions. The Imaging Core utilizes light and confocal microscopy to visualize both living and fixed cells. Currently the core is equipped with three confocal microscopes (Nikon A1 with TIRF, Olympus FV1000 and Olympus FV300), Imaris image analysis software, and multiple light microscopes. The Imaging Core assists researchers with immuno-fluorescent staining, tagged fluorescent protein visualization, and 3-dimensional image reconstruction. By providing imaging assistance to COBRE and CHRC labs, and by centralizing all microscopes within our institution, we reduce cost and time while increasing productivity. Imaging and image analysis is essential to most projects on the COBRE, and the Imaging Core makes these critical analyses available to every investigator.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Exploratory Grants (P20)
Project #
5P20RR017662-09
Application #
8360551
Study Section
National Center for Research Resources Initial Review Group (RIRG)
Project Start
2011-07-01
Project End
2012-06-30
Budget Start
2011-07-01
Budget End
2012-06-30
Support Year
9
Fiscal Year
2011
Total Cost
$112,313
Indirect Cost
Name
Sanford Research/Usd
Department
Type
DUNS #
050113252
City
Sioux Falls
State
SD
Country
United States
Zip Code
57104
Eclov, Julie A; Qian, Qingwen; Redetzke, Rebecca et al. (2015) EPA, not DHA, prevents fibrosis in pressure overload-induced heart failure: potential role of free fatty acid receptor 4. J Lipid Res 56:2297-308
Savinova, Olga V; Fillaus, Kristi; Harris, William S et al. (2015) Effects of niacin and omega-3 fatty acids on the apolipoproteins in overweight patients with elevated triglycerides and reduced HDL cholesterol. Atherosclerosis 240:520-5
McKenzie, Casey W; Craige, Branch; Kroeger, Tiffany V et al. (2015) CFAP54 is required for proper ciliary motility and assembly of the central pair apparatus in mice. Mol Biol Cell 26:3140-9
Kobayashi, Satoru; Liang, Qiangrong (2015) Autophagy and mitophagy in diabetic cardiomyopathy. Biochim Biophys Acta 1852:252-61
O'Connell, Timothy D; Jensen, Brian C; Baker, Anthony J et al. (2014) Cardiac alpha1-adrenergic receptors: novel aspects of expression, signaling mechanisms, physiologic function, and clinical importance. Pharmacol Rev 66:308-33
Savinova, Olga V; Fillaus, Kristi; Jing, Linhong et al. (2014) Reduced apolipoprotein glycosylation in patients with the metabolic syndrome. PLoS One 9:e104833
Jensen, Brian C; O?Connell, Timothy D; Simpson, Paul C (2014) Alpha-1-adrenergic receptors in heart failure: the adaptive arm of the cardiac response to chronic catecholamine stimulation. J Cardiovasc Pharmacol 63:291-301
Wu, Steven C; Dahl, Erika F; Wright, Casey D et al. (2014) Nuclear localization of a1A-adrenergic receptors is required for signaling in cardiac myocytes: an “inside-out” a1-AR signaling pathway. J Am Heart Assoc 3:e000145
Xu, Xianmin; Kobayashi, Satoru; Chen, Kai et al. (2013) Diminished autophagy limits cardiac injury in mouse models of type 1 diabetes. J Biol Chem 288:18077-92
Chen, Kai; Kobayashi, Satoru; Xu, Xianmin et al. (2013) AMP activated protein kinase is indispensable for myocardial adaptation to caloric restriction in mice. PLoS One 8:e59682

Showing the most recent 10 out of 63 publications