This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff. Advances in automated high throughput liquid handling have resulted in dramatically reduced sample requirement for macromolecular crystallization. Commercially available crystallization robots, such as the Gryphon produced by Art Robbins Inc, allow for nanoliter drop sizes and thus can screen for conditions that produce X-ray diffraction-quality crystals from as little as 1-2 mg of purified protein. Because the requirement for large amounts of sample is a major impediment to collaborative structural studies, reducing sample needs will expand the scope and quantity of collaborative structural work that can be pursued. This proposal requests funds to acquire the Gryphon crystallization robot. We propose that this acquisition will allow for greatly enhanced structural biological collaboration within the Redox Biology Center and the larger university community. Two RBC crystallographers, Drs. Joe Barycki and Mark Wilson, will be responsible for the instrument and for managing collaborations. Funds are also requested for a support person at the B.S. to M.S. level to maintain the instrument and to handle operational details of these collaborative efforts.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Exploratory Grants (P20)
Project #
5P20RR017675-10
Application #
8360537
Study Section
Special Emphasis Panel (ZRR1-RI-5 (01))
Project Start
2011-08-01
Project End
2012-08-31
Budget Start
2011-08-01
Budget End
2013-07-31
Support Year
10
Fiscal Year
2011
Total Cost
$100,837
Indirect Cost
Name
University of Nebraska Lincoln
Department
Biochemistry
Type
Schools of Earth Sciences/Natur
DUNS #
555456995
City
Lincoln
State
NE
Country
United States
Zip Code
68588
Garza-Lombó, Carla; Schroder, Annika; Reyes-Reyes, Elsa M et al. (2018) mTOR/AMPK signaling in the brain: Cell metabolism, proteostasis and survival. Curr Opin Toxicol 8:102-110
Marshall, Darrell D; Powers, Robert (2017) Beyond the paradigm: Combining mass spectrometry and nuclear magnetic resonance for metabolomics. Prog Nucl Magn Reson Spectrosc 100:1-16
Anandhan, Annadurai; Lei, Shulei; Levytskyy, Roman et al. (2017) Glucose Metabolism and AMPK Signaling Regulate Dopaminergic Cell Death Induced by Gene (?-Synuclein)-Environment (Paraquat) Interactions. Mol Neurobiol 54:3825-3842
Rose, Jordan; Brian, Christian; Woods, Jade et al. (2017) Mitochondrial dysfunction in glial cells: Implications for neuronal homeostasis and survival. Toxicology 391:109-115
Boone, Cory H T; Grove, Ryan A; Adamcova, Dana et al. (2017) Oxidative stress, metabolomics profiling, and mechanism of local anesthetic induced cell death in yeast. Redox Biol 12:139-149
Markley, John L; Brüschweiler, Rafael; Edison, Arthur S et al. (2017) The future of NMR-based metabolomics. Curr Opin Biotechnol 43:34-40
Duszenko, Nikolas; Buan, Nicole R (2017) Physiological Evidence for Isopotential Tunneling in the Electron Transport Chain of Methane-Producing Archaea. Appl Environ Microbiol 83:
Anandhan, Annadurai; Jacome, Maria S; Lei, Shulei et al. (2017) Metabolic Dysfunction in Parkinson's Disease: Bioenergetics, Redox Homeostasis and Central Carbon Metabolism. Brain Res Bull 133:12-30
Jouett, Noah P; Moralez, Gilbert; White, Daniel W et al. (2016) N-Acetylcysteine reduces hyperacute intermittent hypoxia-induced sympathoexcitation in human subjects. Exp Physiol 101:387-96
Gebregiworgis, Teklab; Nielsen, Helle H; Massilamany, Chandirasegaran et al. (2016) A Urinary Metabolic Signature for Multiple Sclerosis and Neuromyelitis Optica. J Proteome Res 15:659-66

Showing the most recent 10 out of 177 publications