This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff. Several reports implicated the involvement of sphingosine kinase 1 (SK1)/sphingosine 1-phosphate (S1P) in the mobilization of intracellular Ca2+. However, the exact mechanism is poorly understood. Our early observation using FLIPR Tetra"""""""" to measure the intracellular Ca2+ levels in HEK293 cells stably expressing angiotensin II type 1a (AT1a) receptors and primary rat and murine vascular smooth muscle cells (VSMC), indicates a characteristic pattern of AngII induced increase in intracellular Ca2+ level, an immediate peak followed by a sustained Ca2+ elevation through store operated calcium channels (SOC). Additionally, inhibition, downregulation or genetic deletion of SK1 expression attenuated the first phase and abrogated the second phase of Ca2+ elevation. Moreover, perincubation of the afferent arteriole of the isolated rabbit glomeruli with SK1 inhibitor, dimethylsphingosine (DMS) blocked the sustained elevation of intracellular Ca2+ and vasoconstrictive response of Ang II perfusion. In vivo experiments performed on wild type and SK1KO mice revealed that deletion of SK1 reverses the effect of AngII on glomerular filtration rate (GFR). This has led us to hypothesize that SK1 activation plays a key role in the AngII induced intracellular Ca2+ elevation and thereby regulates AngII-mediated vascular tone and renal microvascular hemodynamic.

National Institute of Health (NIH)
National Center for Research Resources (NCRR)
Exploratory Grants (P20)
Project #
Application #
Study Section
Special Emphasis Panel (ZRR1-RI-5 (01))
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Medical University of South Carolina
Schools of Medicine
United States
Zip Code
Xu, Ruijuan; Wang, Kai; Mileva, Izolda et al. (2016) Alkaline ceramidase 2 and its bioactive product sphingosine are novel regulators of the DNA damage response. Oncotarget 7:18440-57
Mazzulli, Joseph R; Zunke, Friederike; Tsunemi, Taiji et al. (2016) Activation of β-Glucocerebrosidase Reduces Pathological α-Synuclein and Restores Lysosomal Function in Parkinson's Patient Midbrain Neurons. J Neurosci 36:7693-706
Mazzulli, Joseph R; Zunke, Friederike; Isacson, Ole et al. (2016) α-Synuclein-induced lysosomal dysfunction occurs through disruptions in protein trafficking in human midbrain synucleinopathy models. Proc Natl Acad Sci U S A 113:1931-6
Fan, Jie; Wu, Bill X; Crosson, Craig E (2016) Suppression of Acid Sphingomyelinase Protects the Retina from Ischemic Injury. Invest Ophthalmol Vis Sci 57:4476-84
Podbielska, Maria; Szulc, Zdzisław M; Kurowska, Ewa et al. (2016) Cytokine-induced release of ceramide-enriched exosomes as a mediator of cell death signaling in an oligodendroglioma cell line. J Lipid Res 57:2028-2039
Taguchi, Yoshimitsu; Allende, Maria L; Mizukami, Hiroki et al. (2016) Sphingosine-1-phosphate Phosphatase 2 Regulates Pancreatic Islet β-Cell Endoplasmic Reticulum Stress and Proliferation. J Biol Chem 291:12029-38
Lu, Zhongyang; Li, Yanchun; Jin, Junfei et al. (2015) GPR40/FFA1 and neutral sphingomyelinase are involved in palmitate-boosted inflammatory response of microvascular endothelial cells to LPS. Atherosclerosis 240:163-73
Boppana, Nithin B; Stochaj, Ursula; Kodiha, Mohamed et al. (2015) Enhanced killing of SCC17B human head and neck squamous cell carcinoma cells after photodynamic therapy plus fenretinide via the de novo sphingolipid biosynthesis pathway and apoptosis. Int J Oncol 46:2003-10
Nowling, Tamara K; Mather, Andrew R; Thiyagarajan, Thirumagal et al. (2015) Renal glycosphingolipid metabolism is dysfunctional in lupus nephritis. J Am Soc Nephrol 26:1402-13
Rachidi, Saleh; Sun, Shaoli; Wu, Bill X et al. (2015) Endoplasmic reticulum heat shock protein gp96 maintains liver homeostasis and promotes hepatocellular carcinogenesis. J Hepatol 62:879-88

Showing the most recent 10 out of 180 publications