This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff. The Protein Bioscience Core was created to assist COBRE lipidomics investigators in studying structures and functions of proteins involved in the regulation of lipid metabolism and signaling. Over the years, the Core has transitioned itself from a strictly consultation role to a more active role in servicing investigators in various aspects of protein science. This mainly included the generic service of expressing and purifying recombinant proteins from E. coli cultures. In addition, instruments such as dynamic light scattering and circular dichroism spectrometers were made available to researchers, together with in-depth tutoring, for the characterization of the physical properties of proteins. Recently, the Core started to offer more specialized services, including generation of stable mammalian cell lines expressing protein of interest, antibody design and purification, immunoprecipitation, protein crystal screening, peptide synthesis, protein modification, HPLC-based assays, and fat Western blotting. Because of the variety of services provided by the Protein Bioscience Core and the strong technical supporting base, they allow researchers who are not familiar with protein science, but are interested in studying protein structures and functions, to perform their experiments with greater ease.
The aims of the Core are: 1) To produce proteins of interest for individual investigators that are needed for structural and functional characterization;2) To offer a variety of protein-related specialty services to suit the needs of investigators;and 3) to enhance the understanding and capability of investigators in protein science through mentoring and consultation. Taken together, these aims should contribute to the scientific achievement of the targeted COBRE investigators.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Exploratory Grants (P20)
Project #
5P20RR017677-10
Application #
8360389
Study Section
Special Emphasis Panel (ZRR1-RI-5 (01))
Project Start
2011-07-01
Project End
2012-07-18
Budget Start
2011-07-01
Budget End
2012-07-18
Support Year
10
Fiscal Year
2011
Total Cost
$127,824
Indirect Cost
Name
Medical University of South Carolina
Department
Biochemistry
Type
Schools of Medicine
DUNS #
183710748
City
Charleston
State
SC
Country
United States
Zip Code
29425
Alexaki, Aikaterini; Clarke, Benjamin A; Gavrilova, Oksana et al. (2017) De Novo Sphingolipid Biosynthesis Is Required for Adipocyte Survival and Metabolic Homeostasis. J Biol Chem 292:3929-3939
Hao, Limin; Ben-David, Oshrit; Babb, Suzann M et al. (2017) Clozapine Modulates Glucosylceramide, Clears Aggregated Proteins, and Enhances ATG8/LC3 in Caenorhabditis elegans. Neuropsychopharmacology 42:951-962
Pulkoski-Gross, Michael J; Uys, Joachim D; Orr-Gandy, K Alexa et al. (2017) Novel sphingosine kinase-1 inhibitor, LCL351, reduces immune responses in murine DSS-induced colitis. Prostaglandins Other Lipid Mediat 130:47-56
Zunke, Friederike; Moise, Alexandra C; Belur, Nandkishore R et al. (2017) Reversible Conformational Conversion of ?-Synuclein into Toxic Assemblies by Glucosylceramide. Neuron :
Hammad, Samar M; Baker, Nathaniel L; El Abiad, Jad M et al. (2017) Increased Plasma Levels of Select Deoxy-ceramide and Ceramide Species are Associated with Increased Odds of Diabetic Neuropathy in Type 1 Diabetes: A Pilot Study. Neuromolecular Med 19:46-56
Mazzulli, Joseph R; Zunke, Friederike; Tsunemi, Taiji et al. (2016) Activation of ?-Glucocerebrosidase Reduces Pathological ?-Synuclein and Restores Lysosomal Function in Parkinson's Patient Midbrain Neurons. J Neurosci 36:7693-706
Fan, Jie; Wu, Bill X; Crosson, Craig E (2016) Suppression of Acid Sphingomyelinase Protects the Retina from Ischemic Injury. Invest Ophthalmol Vis Sci 57:4476-84
Taguchi, Yoshimitsu; Allende, Maria L; Mizukami, Hiroki et al. (2016) Sphingosine-1-phosphate Phosphatase 2 Regulates Pancreatic Islet ?-Cell Endoplasmic Reticulum Stress and Proliferation. J Biol Chem 291:12029-38
Mazzulli, Joseph R; Zunke, Friederike; Isacson, Ole et al. (2016) ?-Synuclein-induced lysosomal dysfunction occurs through disruptions in protein trafficking in human midbrain synucleinopathy models. Proc Natl Acad Sci U S A 113:1931-6
Podbielska, Maria; Szulc, Zdzis?aw M; Kurowska, Ewa et al. (2016) Cytokine-induced release of ceramide-enriched exosomes as a mediator of cell death signaling in an oligodendroglioma cell line. J Lipid Res 57:2028-2039

Showing the most recent 10 out of 188 publications