This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff. The overall goal of the project is to examine if the migration of trunk neural crest cells (NCCs) to the Dorsal Root Ganglion (DRG) involves SDF1/CXCR4 signaling and to identify regulatory factors that mediate this process. Defective migration of trunk NCCs can cause perinatal lethality and affect the development and formation of the peripheral nervous system. Towards this end, we generated chicken SDF1 and CXCR4 riboprobes, and utilized them in in situ hybridization (ISH) analyses to determine the spatiotemporal expression of the two genes during embryonic development. The hypothesis being addressed is that trunk NCCs express CXCR4 and migrate towards mesodermal regions of high SDF-1 concentration where they differentiate into the DRG. Chicken embryos (Hamilton-Hamburger (HH) stages ~7 to 22) were used for the study as their developmental stages are well defined and are more amenable to analysis and manipulation. Gene expression profiling of SDF1 and CXCR4 spanning these developmental stages in the chick embryo has largely been accomplished. Using specific antibodies (anti-HNK-1 for NCCs and anti-Islet-1 for the DRG), we are now determining if the expression patterns of CXCR4 and SDF-1 correspond to the developmental paths undertaken by migrating NCCs to become DRG. To identify factors regulating NCC migration via SDF1/ CXCR4 signaling (e.g., TGF?1 and BMP4) and the effect of this signaling on putative downstream targets, such as IP3 kinase, PC12 cells (derived from the adrenal gland and of neural crest origin) are being used as a model system in experiments employing transwells.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Exploratory Grants (P20)
Project #
5P20RR017702-09
Application #
8360172
Study Section
National Center for Research Resources Initial Review Group (RIRG)
Project Start
2011-06-01
Project End
2012-05-31
Budget Start
2011-06-01
Budget End
2012-05-31
Support Year
9
Fiscal Year
2011
Total Cost
$103,712
Indirect Cost
Name
University of Louisville
Department
Dentistry
Type
Schools of Dentistry
DUNS #
057588857
City
Louisville
State
KY
Country
United States
Zip Code
40292
Mukhopadhyay, Partha; Seelan, Ratnam S; Rezzoug, Francine et al. (2017) Determinants of orofacial clefting I: Effects of 5-Aza-2'-deoxycytidine on cellular processes and gene expression during development of the first branchial arch. Reprod Toxicol 67:85-99
Liu, Xiao; Tang, Luosheng; Liu, Yongqing (2017) Mouse Müller Cell Isolation and Culture. Bio Protoc 7:
Li, Shengqiang; Moore, Andrew K; Zhu, Jia et al. (2016) Ggnbp2 Is Essential for Pregnancy Success via Regulation of Mouse Trophoblast Stem Cell Proliferation and Differentiation. Biol Reprod 94:41
Neal, Rachel E; Chen, Jing; Webb, Cindy et al. (2016) Developmental cigarette smoke exposure II: Hepatic proteome profiles in 6 month old adult offspring. Reprod Toxicol 65:414-424
Neal, Rachel E; Jagadapillai, Rekha; Chen, Jing et al. (2016) Developmental cigarette smoke exposure II: Kidney proteome profile alterations in 6 month old adult offspring. Reprod Toxicol 65:425-435
Warner, Dennis R; Smith, Scott C; Smolenkova, Irina A et al. (2016) Inhibition of p300 histone acetyltransferase activity in palate mesenchyme cells attenuates Wnt signaling via aberrant E-cadherin expression. Exp Cell Res 342:32-8
Neal, Rachel E; Jagadapillai, Rekha; Chen, Jing et al. (2016) Developmental cigarette smoke exposure II: Hippocampus proteome and metabolome profiles in adult offspring. Reprod Toxicol 65:436-447
Cashon, Cara H; Ha, Oh-Ryeong; Graf Estes, Katharine et al. (2016) Infants with Williams syndrome detect statistical regularities in continuous speech. Cognition 154:165-168
Jin, Jiu-Zhen; Ding, Jixiang (2015) Strain-Dependent Gene Expression during Mouse Embryonic Palate Development. J Dev Biol 3:2-10
Warner, Dennis; Ding, Jixiang; Mukhopadhyay, Partha et al. (2015) Temporal Expression of miRNAs in Laser Capture Microdissected Palate Medial Edge Epithelium from Tgf?3(-/-) Mouse Fetuses. Microrna 4:64-71

Showing the most recent 10 out of 111 publications