This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff. The overall goal of this proposal is to test the hypothesis that deep sequencing of the microbiome in the CF lung will provide novel information that will guide the clinical use of antibiotics to reduce the bacterial burden in CF. Here we will document and characterize the responsiveness of bacterial populations in the CF lung to Abx therapy in the lung. We propose that such data may provide critical insight into developing new therapeutic approaches for the treatment of CF lung infections. In addition, our microbiome analyses will provide baseline data for the future assessment of novel Abx, and other therapies, in CF patients. We will use state-of-the-art deep sequencing of bacterial populations to gain a complete picture of microbial populations in the lungs of individuals with CF on or off inhaled Tobramycin therapy. We will compare the total numbers (i.e., microbial burden), numbers of species (i.e., diversity) and which species are present (i.e., composition) in patients relative to their Abx treatment status. Because clinical observations have shown that Abx-mediated reductions in some populations result in increases in levels of other potential pathogens, the microbiome approach is key to determine the overall efficacy of Abx in complex CF lung infections. We propose the following Aims:
Aim 1. Test the hypothesis that the burden, diversity and composition of bacteria in the CF lung change as a function of Abx treatment.
Aim 2. Test the hypothesis that we can identify combined Abx therapies that are more efficacious against polymicrobial biofilms using our in vitro model of biofilm formation on airway cells.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Exploratory Grants (P20)
Project #
5P20RR018787-09
Application #
8359706
Study Section
Special Emphasis Panel (ZRR1-RI-6 (01))
Project Start
2011-05-01
Project End
2012-04-30
Budget Start
2011-05-01
Budget End
2012-04-30
Support Year
9
Fiscal Year
2011
Total Cost
$74,269
Indirect Cost
Name
Dartmouth College
Department
Microbiology/Immun/Virology
Type
Schools of Medicine
DUNS #
041027822
City
Hanover
State
NH
Country
United States
Zip Code
03755
Ji, Xuemei; Bossé, Yohan; Landi, Maria Teresa et al. (2018) Identification of susceptibility pathways for the role of chromosome 15q25.1 in modifying lung cancer risk. Nat Commun 9:3221
Ferreiro-Iglesias, Aida; Lesseur, Corina; McKay, James et al. (2018) Fine mapping of MHC region in lung cancer highlights independent susceptibility loci by ethnicity. Nat Commun 9:3927
Demidenko, Eugene; Glaholt, S P; Kyker-Snowman, E et al. (2017) Single toxin dose-response models revisited. Toxicol Appl Pharmacol 314:12-23
Ben Khedher, Soumaya; Neri, Monica; Papadopoulos, Alexandra et al. (2017) Menstrual and reproductive factors and lung cancer risk: A pooled analysis from the international lung cancer consortium. Int J Cancer 141:309-323
Fehringer, Gordon; Brenner, Darren R; Zhang, Zuo-Feng et al. (2017) Alcohol and lung cancer risk among never smokers: A pooled analysis from the international lung cancer consortium and the SYNERGY study. Int J Cancer 140:1976-1984
Madan, Juliette C (2016) Neonatal Gastrointestinal and Respiratory Microbiome in Cystic Fibrosis: Potential Interactions and Implications for Systemic Health. Clin Ther 38:740-6
Chen, Li-Shiun; Baker, Timothy; Hung, Rayjean J et al. (2016) Genetic Risk Can Be Decreased: Quitting Smoking Decreases and Delays Lung Cancer for Smokers With High and Low CHRNA5 Risk Genotypes - A Meta-Analysis. EBioMedicine 11:219-226
Hammond, John H; Hebert, Wesley P; Naimie, Amanda et al. (2016) Environmentally Endemic Pseudomonas aeruginosa Strains with Mutations in lasR Are Associated with Increased Disease Severity in Corneal Ulcers. mSphere 1:
Chen, Li-Shiun; Hung, Rayjean J; Baker, Timothy et al. (2015) CHRNA5 risk variant predicts delayed smoking cessation and earlier lung cancer diagnosis--a meta-analysis. J Natl Cancer Inst 107:
Andrew, Angeline S; Marsit, Carmen J; Schned, Alan R et al. (2015) Expression of tumor suppressive microRNA-34a is associated with a reduced risk of bladder cancer recurrence. Int J Cancer 137:1158-66

Showing the most recent 10 out of 133 publications