This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff. Acute kidney injury (AKI) is a common and debilitating condition with few therapeutic options. Inflammation is a main cause of tissue injury following an acute insult such as ischemia. Superimposed on this, a regenerative response is mounted shortly after the inflammatory injury. Long term outcome is determined by the balance between these two processes, with experimental AKI either resulting in return to normal tissue structure or tissue fibrosis. Immediately following injury, TNFa levels are elevated causing apoptosis of proximal tubule epithelial cells, recruitment of inflammatory cells and widespread tissue damage. TNFa is released by both kidney epithelia and macrophages, and signals directly to kidney epithelia through all phases of injury, including resolution. The vigorous regenerative response seen in the resolution phase depends on BMP and Wnt signaling. TNFa, BMP and Wnt all signal directly to the renal epithelial cell, and we hypothesize that the integrated response to these factors determines the switch from tissue destruction to repair. Map3k7 (TAK) is a common component of TNFa, BMP and canonical Wnt signaling pathways. We propose that this kinase integrates inflammatory and regenerative signaling within the renal epithelial cell, determining the balance between tissue destruction and repair. To test this concept we will: i) Define the role of Map3k7 in balancing the integrated outcome of TNFa, BMP and Wnt signaling in primary human and mouse proximal tubule epithelial cells, ii) Test the requirement for Map3k7 in determining the switch between proximal tubule destruction and regeneration in mouse models of AKI.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Exploratory Grants (P20)
Project #
5P20RR018789-09
Application #
8360270
Study Section
Special Emphasis Panel (ZRR1-RI-6 (01))
Project Start
2011-06-01
Project End
2012-05-31
Budget Start
2011-06-01
Budget End
2012-05-31
Support Year
9
Fiscal Year
2011
Total Cost
$181,479
Indirect Cost
Name
Maine Medical Center
Department
Type
DUNS #
071732663
City
Portland
State
ME
Country
United States
Zip Code
04102
Duarte, Christine W; Black, Adam W; Lucas, F Lee et al. (2017) Cancer incidence in patients with hereditary hemorrhagic telangiectasia. J Cancer Res Clin Oncol 143:209-214
Caron, Jennifer M; Ames, Jacquelyn J; Contois, Liangru et al. (2016) Inhibition of Ovarian Tumor Growth by Targeting the HU177 Cryptic Collagen Epitope. Am J Pathol 186:1649-61
Stohn, J Patrizia; Wang, Qiaozeng; Siviski, Matthew E et al. (2015) Cthrc1 controls adipose tissue formation, body composition, and physical activity. Obesity (Silver Spring) 23:1633-42
Ufkin, Melanie L; Peterson, Sarah; Yang, Xuehui et al. (2014) miR-125a regulates cell cycle, proliferation, and apoptosis by targeting the ErbB pathway in acute myeloid leukemia. Leuk Res 38:402-10
He, Qing; Yang, Xuehui; Gong, Yan et al. (2014) Deficiency of Sef is associated with increased postnatal cortical bone mass by regulating Runx2 activity. J Bone Miner Res 29:1217-31
Motyl, Katherine J; Bishop, Kathleen A; DeMambro, Victoria E et al. (2013) Altered thermogenesis and impaired bone remodeling in Misty mice. J Bone Miner Res 28:1885-97
Urs, Sumithra; Henderson, Terry; Le, Phuong et al. (2012) Tissue-specific expression of Sprouty1 in mice protects against high-fat diet-induced fat accumulation, bone loss and metabolic dysfunction. Br J Nutr 108:1025-33
Sathyanarayana, Pradeep; Dev, Arvind; Pradeep, Anamika et al. (2012) Spry1 as a novel regulator of erythropoiesis, EPO/EPOR target, and suppressor of JAK2. Blood 119:5522-31
Motyl, Katherine J; Dick-de-Paula, Ingrid; Maloney, Ann E et al. (2012) Trabecular bone loss after administration of the second-generation antipsychotic risperidone is independent of weight gain. Bone 50:490-8
Favreau, Amanda J; Cross, Erin L; Sathyanarayana, Pradeep (2012) miR-199b-5p directly targets PODXL and DDR1 and decreased levels of miR-199b-5p correlate with elevated expressions of PODXL and DDR1 in acute myeloid leukemia. Am J Hematol 87:442-6

Showing the most recent 10 out of 102 publications