This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff. Prostate cancer is the most common malignancy and the second most common cause of cancer death in men in the United States. The molecular etiology of this disease is largely unknown. However, human cancer progresses through the accumulation of somatic mutations. Several years ago it was discovered that mammalian cells need distinct DNA polymerases to efficiently bypass DNA damage without introducing mutations. These polymerases include human pol eta, kappa and beta. Both pol beta and pol kappa are located in chromosomal regions known to be lost during prostate cancer progression, while pol eta mutations cause XPV (Xeroderma pigmentosum-variant), a human disorder characterized by increased predisposition to skin cancer. We present preliminary data that prostate tumors have prevalent somatic missense mutations in all three genes. Our long-term goal is to characterize the contribution of pol beta, eta and kappa to prostate cancer predisposition and progression. In this proposal we plan: (1) to identify common somatic variants in the human pol beta, eta and kappa genes by sequencing the entire coding region of these genes using microdissected prostate cancer tissue and matched constitutional DNA from 30 prostate cancer patients. (2) To measure the frequency and distribution by tumor stage, tumor grade and patient age of each of the variants identified above in DNA isolated from 200 prostate cancer tissues, by genotyping with the multiplex SNaPshot kit. (3). to construct the polymerase variants identified above in appropriate cDNA expression vectors and purify them by columns. Following purification, we will biochemically characterize each purified polymerase variant by measuring their respective kinetic parameters compared to wild type by enzyme assays, using appropriate DNA substrates. This analysis will allow us to assess the functional effects of these variants on activity and fidelity of DNA replication.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Exploratory Grants (P20)
Project #
5P20RR020152-08
Application #
8360721
Study Section
Special Emphasis Panel (ZRR1-RI-B (01))
Project Start
2011-08-01
Project End
2012-07-31
Budget Start
2011-08-01
Budget End
2012-07-31
Support Year
8
Fiscal Year
2011
Total Cost
$238,395
Indirect Cost
Name
Tulane University
Department
Public Health & Prev Medicine
Type
Schools of Public Health
DUNS #
053785812
City
New Orleans
State
LA
Country
United States
Zip Code
70118
Ade, Catherine M; Derbes, Rebecca S; Wagstaff, Bradley J et al. (2018) Evaluating different DNA binding domains to modulate L1 ORF2p-driven site-specific retrotransposition events in human cells. Gene 642:188-198
Hodel, Karl P; de Borja, Richard; Henninger, Erin E et al. (2018) Explosive mutation accumulation triggered by heterozygous human Pol ? proofreading-deficiency is driven by suppression of mismatch repair. Elife 7:
Martin, Elizabeth C; Conger, Adrienne K; Yan, Thomas J et al. (2017) MicroRNA-335-5p and -3p synergize to inhibit estrogen receptor alpha expression and promote tamoxifen resistance. FEBS Lett 591:382-392
Wu, Victor J; Pang, Darren; Tang, Wendell W et al. (2017) Obesity, age, ethnicity, and clinical features of prostate cancer patients. Am J Clin Exp Urol 5:1-9
Wang, Xun; Yang, Lingyun; Huang, Feng et al. (2017) Inflammatory cytokines IL-17 and TNF-? up-regulate PD-L1 expression in human prostate and colon cancer cells. Immunol Lett 184:7-14
Liu, Yao-Zhong; Zhang, Lei; Roy-Engel, Astrid M et al. (2017) Carcinogenic effects of oil dispersants: A KEGG pathway-based RNA-seq study of human airway epithelial cells. Gene 602:16-23
Zhang, Q; Liu, S; Parajuli, K R et al. (2017) Interleukin-17 promotes prostate cancer via MMP7-induced epithelial-to-mesenchymal transition. Oncogene 36:687-699
Gopalakrishnan, Anusha M; Aly, Ahmed S I; Aravind, L et al. (2017) Multifunctional Involvement of a C2H2 Zinc Finger Protein (PbZfp) in Malaria Transmission, Histone Modification, and Susceptibility to DNA Damage Response. MBio 8:
Ma, Lin; Li, Jingwu; Nie, Qiang et al. (2017) Organoid culture of human prostate cancer cell lines LNCaP and C4-2B. Am J Clin Exp Urol 5:25-33
Yang, Lingyun; Huang, Feng; Mei, Jiandong et al. (2017) Posttranscriptional Control of PD-L1 Expression by 17?-Estradiol via PI3K/Akt Signaling Pathway in ER?-Positive Cancer Cell Lines. Int J Gynecol Cancer 27:196-205

Showing the most recent 10 out of 157 publications