This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. A.
Specific Aims : PSAP is a 70-kDa protein identified, cloned, and characterized by our laboratory and found to increase growth, migration, and invasion of PCa cells. Homozygous inactivation of the PSAP gene in mice led to shrinkage and atrophic changes in the male reproductive organs, with gross pathological features including a reduction in size and weight of the testes, seminal vesicle, and prostate gland. Histological examination of the involuted prostate tissue revealed the presence of undifferentiated epithelial cells. Collectively, these data support a developmental role for PSAP in the prostate gland. Our current data show that down modulating PSAP expression by shRNA leads to a significant reduction of (a) PCa cells adhesion to basement membrane proteins, (b) the expression of the proteolytic enzymes (e.g., Cathepsin D) and (c) migratory and invasion properties of PCa cells. To test our hypothesis that PSAP contributes substantially to the invasion of human PCa cells, we proposed the following Specific Aims: 1. Define the mechanisms by which PSAP regulates PCa invasion in vitro. 2. Determine the underlying mechanisms and the cause and effect relationship between PSAP and cathepsin D in PCa cells invasiveness.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Exploratory Grants (P20)
Project #
2P20RR021970-06
Application #
8168422
Study Section
Special Emphasis Panel (ZRR1-CR-B (01))
Project Start
2010-08-01
Project End
2011-06-30
Budget Start
2010-08-01
Budget End
2011-06-30
Support Year
6
Fiscal Year
2010
Total Cost
$172,755
Indirect Cost
Name
Louisiana State Univ Hsc New Orleans
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
782627814
City
New Orleans
State
LA
Country
United States
Zip Code
70112
Rodriguez, Paulo C; Ochoa, Augusto C; Al-Khami, Amir A (2017) Arginine Metabolism in Myeloid Cells Shapes Innate and Adaptive Immunity. Front Immunol 8:93
Sanchez, Maria Dulfary; Ochoa, Augusto C; Foster, Timothy P (2016) Development and evaluation of a host-targeted antiviral that abrogates herpes simplex virus replication through modulation of arginine-associated metabolic pathways. Antiviral Res 132:13-25
Dai, Lu; Bai, Lihua; Lin, Zhen et al. (2016) Transcriptomic analysis of KSHV-infected primary oral fibroblasts: The role of interferon-induced genes in the latency of oncogenic virus. Oncotarget 7:47052-47060
Schieffelin, John; Moses, Lina M; Shaffer, Jeffrey et al. (2016) Clinical validation trial of a diagnostic for Ebola Zaire antigen detection: Design rationale and challenges to implementation. Clin Trials 13:66-72
Fletcher, Matthew; Ramirez, Maria E; Sierra, Rosa A et al. (2015) l-Arginine depletion blunts antitumor T-cell responses by inducing myeloid-derived suppressor cells. Cancer Res 75:275-83
Dai, Lu; Trillo-Tinoco, Jimena; Bai, Aiping et al. (2015) Ceramides promote apoptosis for virus-infected lymphoma cells through induction of ceramide synthases and viral lytic gene expression. Oncotarget 6:24246-60
Geng, Degui; Kaczanowska, Sabina; Tsai, Alexander et al. (2015) TLR5 Ligand-Secreting T Cells Reshape the Tumor Microenvironment and Enhance Antitumor Activity. Cancer Res 75:1959-1971
Dai, Lu; Trillo-Tinoco, Jimena; Cao, Yueyu et al. (2015) Targeting HGF/c-MET induces cell cycle arrest, DNA damage, and apoptosis for primary effusion lymphoma. Blood 126:2821-31
Dai, Lu; Cao, Yueyu; Chen, Yihan et al. (2015) Genomic analysis of xCT-mediated regulatory network: Identification of novel targets against AIDS-associated lymphoma. Oncotarget 6:12710-22
Dai, Lu; Chen, Yihan; Bonstaff, Karlie et al. (2015) Induction of hyaluronan production by oncogenic KSHV and the contribution to viral pathogenesis in AIDS patients. Cancer Lett 362:158-66

Showing the most recent 10 out of 85 publications