This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff. Uncontrolled cell growth within a tumor results in hypoxia as the metabolic needs of the cells exceed the ability of the tumor vasculature to provide oxygen and nutrients. In response to the hypoxic microenvironment, cells undergo a massive reprogramming of transcription to promote survival. The Hypoxia Inducible Transcription Factors (HIFs) are primary regulators of the hypoxic response and induce expression of several transcripitonal regulators, including several histone demethylases, providing a mechanism for the hypoxic cell to extend or fix the expression of pro-survival genes. One of these histone demethylases, JMJD2B (KDM4B), demethylates tri-methylated histone H3 lysine 9 (H3K9me3) a key marker of repressed chromatin structure. Hypoxic induction of KDM4B may play an important role in activating gene expression to promote tumor growth, and therefore makes an attractive target for the development of new chemotherapeutic agents. In this proposal, the extent to which JMJD2B regulates tumor growth will be tested in the following manner: 1. In vivo using tumor xenograft experiments (Specific Aim 1, Sub-aim 1) 2. In vitro by assaying for cell proliferation, invasion, and angiogenesis as a result of JMJD2B expression (Specific Aim 1, sub-aim 2). 3. Expression microarray experiments will identify new genes regulated by JMJD2B in hypoxia. 4. Chromatin immunoprecipitation will characterize the regulation of key pathways of genes important for the tumorigenic phenotype (Specific Aim 2). The experiments described in this proposal will establish the mechanisms utilized by JMJD2B to regulate tumorigenesis, while identifying new pathways to target for enhanced tumor therapies.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Exploratory Grants (P20)
Project #
5P20RR024214-05
Application #
8360685
Study Section
National Center for Research Resources Initial Review Group (RIRG)
Project Start
2011-07-01
Project End
2012-08-31
Budget Start
2011-07-01
Budget End
2012-12-30
Support Year
5
Fiscal Year
2011
Total Cost
$216,633
Indirect Cost
Name
University of Kansas
Department
Anatomy/Cell Biology
Type
Schools of Medicine
DUNS #
016060860
City
Kansas City
State
KS
Country
United States
Zip Code
66160
Pohler, Ky G; Green, Jonathan A; Moley, Laura A et al. (2017) Circulating microRNA as candidates for early embryonic viability in cattle. Mol Reprod Dev 84:731-743
Rogers, Robert S; Tungtur, Sudheer; Tanaka, Tomohiro et al. (2017) Impaired Mitophagy Plays a Role in Denervation of Neuromuscular Junctions in ALS Mice. Front Neurosci 11:473
Navakanitworakul, Raphatphorn; Hung, Wei-Ting; Gunewardena, Sumedha et al. (2016) Characterization and Small RNA Content of Extracellular Vesicles in Follicular Fluid of Developing Bovine Antral Follicles. Sci Rep 6:25486
Aleksandrova, Anastasiia; Czirok, Andras; Kosa, Edina et al. (2015) The endoderm and myocardium join forces to drive early heart tube assembly. Dev Biol 404:40-54
Nishimune, Hiroshi; Stanford, John A; Mori, Yasuo (2014) Role of exercise in maintaining the integrity of the neuromuscular junction. Muscle Nerve 49:315-24
Wang, Huizhen; Larson, Melissa; Jablonka-Shariff, Albina et al. (2014) Redirecting intracellular trafficking and the secretion pattern of FSH dramatically enhances ovarian function in mice. Proc Natl Acad Sci U S A 111:5735-40
Zhang, Yu-Kun Jennifer; Lu, Hong; Klaassen, Curtis D (2013) Expression of human CAR splicing variants in BAC-transgenic mice. Toxicol Sci 132:142-50
Elsarraj, Hanan S; Hong, Yan; Valdez, Kelli et al. (2013) A novel role of microRNA146b in promoting mammary alveolar progenitor cell maintenance. J Cell Sci 126:2446-58
Galvin-Burgess, Katherine E; Travis, Emily D; Pierson, Kelsey E et al. (2013) TGF-?-superfamily signaling regulates embryonic stem cell heterogeneity: self-renewal as a dynamic and regulated equilibrium. Stem Cells 31:48-58
Nishimune, Hiroshi (2012) Active zones of mammalian neuromuscular junctions: formation, density, and aging. Ann N Y Acad Sci 1274:24-32

Showing the most recent 10 out of 52 publications