This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff. The Cardiovascular Pathology Core serves as a central resource for generating and evaluating data from in vivo mouse models of cardiovascular disease, particularly those that are complicated by diabetes. This Core performs surgical occlusion and reperfusion in the intact mouse. Such subjects can be evaluated over time in Core D via echocardiography and tissue can be harvested and evaluated by virtually all of the other Cores and individual Projects. This Core has more than a decade of experience in the in vivo mouse infarction model. Such experience will prove invaluable for the new investigators in each of the COBRE's Projects. In addition to the in vivo models of cardiovascular disease, this Core serves the basic histopathology needs of the individual projects.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Exploratory Grants (P20)
Project #
5P20RR024489-04
Application #
8360411
Study Section
National Center for Research Resources Initial Review Group (RIRG)
Project Start
2011-07-01
Project End
2012-06-30
Budget Start
2011-07-01
Budget End
2012-06-30
Support Year
4
Fiscal Year
2011
Total Cost
$109,604
Indirect Cost
Name
University of Louisville
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
057588857
City
Louisville
State
KY
Country
United States
Zip Code
40292
Guo, Yiru; Wysoczynski, Marcin; Nong, Yibing et al. (2017) Repeated doses of cardiac mesenchymal cells are therapeutically superior to a single dose in mice with old myocardial infarction. Basic Res Cardiol 112:18
Klionsky, Daniel J (see original citation for additional authors) (2016) Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy 12:1-222
Salabei, Joshua K; Lorkiewicz, Pawel K; Mehra, Parul et al. (2016) Type 2 Diabetes Dysregulates Glucose Metabolism in Cardiac Progenitor Cells. J Biol Chem 291:13634-48
Dassanayaka, Sujith; Jones, Steven P (2015) Recent Developments in Heart Failure. Circ Res 117:e58-63
Brooks, Alan C; DeMartino, Angelica M; Brainard, Robert E et al. (2015) Induction of activating transcription factor 3 limits survival following infarct-induced heart failure in mice. Am J Physiol Heart Circ Physiol 309:H1326-35
Salabei, Joshua K; Lorkiewicz, Pawel K; Holden, Candice R et al. (2015) Glutamine Regulates Cardiac Progenitor Cell Metabolism and Proliferation. Stem Cells 33:2613-27
Salabei, Joshua K; Hill, Bradford G (2015) Autophagic regulation of smooth muscle cell biology. Redox Biol 4:97-103
Muthusamy, Senthilkumar; DeMartino, Angelica M; Watson, Lewis J et al. (2014) MicroRNA-539 is up-regulated in failing heart, and suppresses O-GlcNAcase expression. J Biol Chem 289:29665-76
Salabei, Joshua K; Gibb, Andrew A; Hill, Bradford G (2014) Comprehensive measurement of respiratory activity in permeabilized cells using extracellular flux analysis. Nat Protoc 9:421-38
Dassanayaka, Sujith; Jones, Steven P (2014) O-GlcNAc and the cardiovascular system. Pharmacol Ther 142:62-71

Showing the most recent 10 out of 97 publications