Neurodegenerative disorders are characterized by abundant protein aggregates in brain and spinal cord (CNS) that are the defining neuropathology (NP) of these disorders as exemplified by senile plaques (SPs) and neurofibrillary tangles (NFTs), the diagnostic signatures of Alzheimer's disease (AD). However, AD is associated with Lewy bodies (LBs) and TDP-43 pathologies in >50% of patients while mild cognitive impairment (MCI) often shows abundant SPs and NFTs at autopsy consistent with AD. Further, the NP in ~25% or more of frontotemporal lobar degeneration (FTLD) patients is AD, while the remaining FTLD cases are non-AD tauopathies (FTLD-Tau), TDP-43 proteinopathy (FTLD-TDP) or, rarely, FUS proteinopathy (FTLD-FUS). Thus, a definitive diagnosis of AD and related dementias is established definitively only by postmortem NP examination, and an accurate NP diagnosis is essential for informative clinicopathologic correlations to elucidate molecular mechanisms of MCI, AD, FTLD and other dementias such as Parkinson's disease with dementia and dementia with LBs. Since multiple genetic factors contribute to the risk for AD and biomarkers signal disease onset/progression, DNA and biofluid banking is critical for genetic and biomarker studies. Hence, the University of Pennsylvania (Penn) AD Core Center (ADCC) characterizes and banks CNS tissues, DNA and biofluids from well-characterized patients followed in Clinical Core B with AD and related disorders as well as normal control subjects. This is essential for research conducted in ADCC Pilots and other grants that utilize Penn ADCC resources. Accordingly, Core D is re-named the Neuropathology, Genetics and Biomarker Core to reflect the full scope of its current activities. Core D also distributes tissue, DNA and biofluids to investigators at and beyond Penn for research. Finally, Core D works with the Data Management and Statistics Core C to enter all information into a database, maintain data confidentiality, and provide these data to NACC. In summary, Core D performs critical functions to support the mission of the Penn ADCC.

Public Health Relevance

Core D is highly relevant to the continued success of the Penn ADCC because it provides critical diagnostic, biosample banking and expertise in NP, genetics and biomarker studies that support the mission of the Penn ADCC which challenges/re-defines current clinical practice paradigms and research on AD and related disorders as well as MCI and normal aging by utilizing novel concepts and approaches to achieve the goals ofthis ADCC including integration of genetics and biomarkers with postmortem pathologic analysis.

National Institute of Health (NIH)
National Institute on Aging (NIA)
Center Core Grants (P30)
Project #
Application #
Study Section
Special Emphasis Panel (ZAG1-ZIJ-5)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Pennsylvania
United States
Zip Code
Henderson, Michael X; Chung, Charlotte Hiu-Yan; Riddle, Dawn M et al. (2017) Unbiased Proteomics of Early Lewy Body Formation Model Implicates Active Microtubule Affinity-Regulating Kinases (MARKs) in Synucleinopathies. J Neurosci 37:5870-5884
LoBue, Christian; Wadsworth, Hannah; Wilmoth, Kristin et al. (2017) Traumatic brain injury history is associated with earlier age of onset of Alzheimer disease. Clin Neuropsychol 31:85-98
Cousins, Katheryn A Q; Ash, Sharon; Irwin, David J et al. (2017) Dissociable substrates underlie the production of abstract and concrete nouns. Brain Lang 165:45-54
Brown, Christopher A; Johnson, Nathan F; Anderson-Mooney, Amelia J et al. (2017) Development, validation and application of a new fornix template for studies of aging and preclinical Alzheimer's disease. Neuroimage Clin 13:106-115
Bell, S P; Liu, D; Samuels, L R et al. (2017) Late-Life Body Mass Index, Rapid Weight Loss, Apolipoprotein E ?4 and the Risk of Cognitive Decline and Incident Dementia. J Nutr Health Aging 21:1259-1267
Phillips, Jeffrey S; Da Re, Fulvio; Dratch, Laynie et al. (2017) Neocortical origin and progression of gray matter atrophy in nonamnestic Alzheimer's disease. Neurobiol Aging 63:75-87
Monsell, Sarah E; Mock, Charles; Fardo, David W et al. (2017) Genetic Comparison of Symptomatic and Asymptomatic Persons With Alzheimer Disease Neuropathology. Alzheimer Dis Assoc Disord 31:232-238
Chapuis, Julien; Flaig, Amandine; Grenier-Boley, Benjamin et al. (2017) Genome-wide, high-content siRNA screening identifies the Alzheimer's genetic risk factor FERMT2 as a major modulator of APP metabolism. Acta Neuropathol 133:955-966
Lee, Edward B; Porta, Sílvia; Michael Baer, G et al. (2017) Expansion of the classification of FTLD-TDP: distinct pathology associated with rapidly progressive frontotemporal degeneration. Acta Neuropathol 134:65-78
Irwin, David J; Grossman, Murray; Weintraub, Daniel et al. (2017) Neuropathological and genetic correlates of survival and dementia onset in synucleinopathies: a retrospective analysis. Lancet Neurol 16:55-65

Showing the most recent 10 out of 586 publications