The purpose of the Healthspan and Functional Assessment Core is to provide researchers in aging with measures of the functional status of animal models of aging by assessing the performance of an array of organs and physiological systems. Emphasis is on functions known to be altered with age or in age-related diseases and that may be important in the health of mice and/or humans.
The Specific Aims of the Healthspan and Functional Assessment Core are to provide the following: 1. Assessment of endocrine/ metabolic function and body composition/structure. In humans, resting metabolic rate (MR), activity, and rhythmicity of activity patterns decline with age. We will assess these parameters by using our metabolic cage system (Sable Systems). As changes in endocrine/metabolic function are closely tied to changes in body composition, we will also provide investigators with tools to measure whole body and regional lean and fat mass and measures of bone mineral density. We will also provide support for performing tests of glucose utilization and insulin sensitivity, including the hyperinsulinemic euglycemic clamp for testing insulin sensitivity of different tissues. 2. Measures of cardiovascular function. It has become clear in recent years that while mice do not develop hypertension they are prone to some of the same cardiac changes with age as are humans, including age-related cardiac muscle atrophy, increased fibrosis, and a decrease in diastolic function and ejection fraction. Thus, we will provide investigators with the tools and expertise to measure a variety of cardiac parameters using our state-of-the-art Vevo 770 High-Resolution in vivo Imaging System (Visual Sonics). Moreover, a pharmacological version of a cardiac stress test can be made on lightly anaesthetized mice treated with dobutamine, which temporarily increases heart rate and thus acts as a stressor. 3. Tests of locomotor behavior and cognitive health. Balance, coordination, flexibility, strength, and endurance all decline with age. Therefore the Core will provide assays of neurological, neuromuscular, skeletal muscle, and joint health. Different dimensions of cognitive health will be assessed by passive avoidance, contextual fear conditioning, and the Barnes maze and Morris water maze. 4. Education and consultation to core users. A major function of the core, will be to provide the appropriate expertise and education on the use of these tools both to help investigators gather preliminary data for grant applications and to help investigators with manuscript preparation.

Public Health Relevance

In the US, the increasing age of the population is a major risk factor for morbidity and most common diseases such as atherosclerosis, cancers, Parkinson's disease, dementia, and metabolic syndrome. Treatments that increase that portion of the lifespan free of disabling morbidity, i.e., healthspan, in mice, will suggest research directions leading to clinical treatments designed to prevent or retard deleterious changes with age.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Center Core Grants (P30)
Project #
5P30AG013319-18
Application #
8572566
Study Section
Special Emphasis Panel (ZAG1-ZIJ-2 (M1))
Project Start
1997-07-15
Project End
2015-06-30
Budget Start
2012-07-15
Budget End
2013-06-30
Support Year
18
Fiscal Year
2012
Total Cost
$140,734
Indirect Cost
$46,492
Name
University of Texas Health Science Center San Antonio
Department
Type
DUNS #
800772162
City
San Antonio
State
TX
Country
United States
Zip Code
78229
Tarantini, Stefano; Fulop, Gabor A; Kiss, Tamas et al. (2017) Demonstration of impaired neurovascular coupling responses in TG2576 mouse model of Alzheimer's disease using functional laser speckle contrast imaging. Geroscience :
Zhang, Yiqiang; Unnikrishnan, Archana; Deepa, Sathyaseelan S et al. (2017) A new role for oxidative stress in aging: The accelerated aging phenotype in Sod1-/- mice is correlated to increased cellular senescence. Redox Biol 11:30-37
Tavakoli, Sina; Short, John D; Downs, Kevin et al. (2017) Differential Regulation of Macrophage Glucose Metabolism by Macrophage Colony-stimulating Factor and Granulocyte-Macrophage Colony-stimulating Factor: Implications for (18)F FDG PET Imaging of Vessel Wall Inflammation. Radiology 283:87-97
Csiszar, Anna; Tarantini, Stefano; Fülöp, Gábor A et al. (2017) Hypertension impairs neurovascular coupling and promotes microvascular injury: role in exacerbation of Alzheimer's disease. Geroscience :
Bai, Xiang; Wey, Margaret Chia-Ying; Martinez, Paul Anthony et al. (2017) Neurochemical and motor changes in mice with combined mutations linked to Parkinson's disease. Pathobiol Aging Age Relat Dis 7:1267855
McGill-Vargas, Lisa; Gastaldelli, Amalia; Liang, Hanyu et al. (2017) Hepatic Insulin Resistance and Altered Gluconeogenic Pathway in Premature Baboons. Endocrinology 158:1140-1151
Lin, Ai-Ling; Jahrling, Jordan B; Zhang, Wei et al. (2017) Rapamycin rescues vascular, metabolic and learning deficits in apolipoprotein E4 transgenic mice with pre-symptomatic Alzheimer's disease. J Cereb Blood Flow Metab 37:217-226
Qi, Wenbo; Gutierrez, Gloria E; Gao, Xiaoli et al. (2017) The ?-3 fatty acid ?-linolenic acid extends Caenorhabditis elegans lifespan via NHR-49/PPAR? and oxidation to oxylipins. Aging Cell 16:1125-1135
Deng, Yilun; Flores, Shahida K; Cheng, ZiMing et al. (2017) Molecular and phenotypic evaluation of a novel germline TMEM127 mutation with an uncommon clinical presentation. Endocr Relat Cancer 24:L79-L82
Ashpole, Nicole M; Logan, Sreemathi; Yabluchanskiy, Andriy et al. (2017) IGF-1 has sexually dimorphic, pleiotropic, and time-dependent effects on healthspan, pathology, and lifespan. Geroscience 39:129-145

Showing the most recent 10 out of 209 publications