The Pathology Core will play a key role in the San Antonio Nathan Shock Aging Center because pathology increases exponentially with advancing age and is largely responsible for age-related morbidity and mortality. Knowledge of the pathological lesions associated with interventions that the Center will use to study aging is essential to interpreting the impact of these interventions on the aging process(es). This knowledge will also provide insight into the underlying mechanism(s) of the interventions. The pathological assessment of old animals is important when determining whether the changes observed as animals age are associated with or independent of underlying pathological conditions. It is, therefore, essential to obtain accurate and thorough pathological assessments of aging animals. The Pathology Core described herein will build on the extensive experience of researchers at San Antonio and the expertise of the Core Leader in rodent pathology analyses.
The Specific Aims of the Pathology Core are as follows: 1 2. To conduct comprehensive end-of-life and cross-sectional pathological analyses of established and new rodent models, and other species used in aging research that die spontaneously in the aging colonies maintained in the Aging Animal and Longevity Assessment Core. To conduct quantitative morphometric analyses of the tissues/organs of transgenic rodents and their control littermates examined by the 3D and 2D image analyses. To develop a comprehensive database of histopathologic findings as a resource for trend analyses by bioinformatics personnel, to provide basic pathological information for new investigations, and to develop a tissue archive by collecting and storing tissue samples to provide a resource for the analysis of samples by special request and for new morphological research. To assist faculty and students who are interested in conducting basic biological animal research in aging with the pathological analyses needed for grant applications and manuscripts preparation.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Center Core Grants (P30)
Project #
5P30AG013319-19
Application #
8572593
Study Section
Special Emphasis Panel (ZAG1-ZIJ-2)
Project Start
Project End
Budget Start
2013-07-01
Budget End
2014-06-30
Support Year
19
Fiscal Year
2013
Total Cost
$122,571
Indirect Cost
$40,584
Name
University of Texas Health Science Center San Antonio
Department
Type
DUNS #
800772162
City
San Antonio
State
TX
Country
United States
Zip Code
78229
Sataranatarajan, Kavithalakshmi; Ikeno, Yuji; Bokov, Alex et al. (2016) Rapamycin Increases Mortality in db/db Mice, a Mouse Model of Type 2 Diabetes. J Gerontol A Biol Sci Med Sci 71:850-7
Strong, Randy; Miller, Richard A; Antebi, Adam et al. (2016) Longer lifespan in male mice treated with a weakly estrogenic agonist, an antioxidant, an α-glucosidase inhibitor or a Nrf2-inducer. Aging Cell 15:872-84
Melton, David W; Roberts, Alexander C; Wang, Hanzhou et al. (2016) Absence of CCR2 results in an inflammaging environment in young mice with age-independent impairments in muscle regeneration. J Leukoc Biol 100:1011-1025
Pomilio, Carlos; Pavia, Patricio; Gorojod, Roxana Mayra et al. (2016) Glial alterations from early to late stages in a model of Alzheimer's disease: Evidence of autophagy involvement in Aβ internalization. Hippocampus 26:194-210
Treuting, P M; Snyder, J M; Ikeno, Y et al. (2016) The Vital Role of Pathology in Improving Reproducibility and Translational Relevance of Aging Studies in Rodents. Vet Pathol 53:244-9
Richardson, Arlan; Austad, Steven N; Ikeno, Yuji et al. (2016) Significant life extension by ten percent dietary restriction. Ann N Y Acad Sci 1363:11-7
Richardson, Arlan; Fischer, Kathleen E; Speakman, John R et al. (2016) Measures of Healthspan as Indices of Aging in Mice-A Recommendation. J Gerontol A Biol Sci Med Sci 71:427-30
Salmon, Adam B; Kim, Geumsoo; Liu, Chengyu et al. (2016) Effects of transgenic methionine sulfoxide reductase A (MsrA) expression on lifespan and age-dependent changes in metabolic function in mice. Redox Biol 10:251-256
Wu, Junjie; Sun, Yun; Block, Travis J et al. (2016) Umbilical cord blood-derived non-hematopoietic stem cells retrieved and expanded on bone marrow-derived extracellular matrix display pluripotent characteristics. Stem Cell Res Ther 7:176
Fischer, Kathleen E; Hoffman, Jessica M; Sloane, Lauren B et al. (2016) A cross-sectional study of male and female C57BL/6Nia mice suggests lifespan and healthspan are not necessarily correlated. Aging (Albany NY) 8:2370-2391

Showing the most recent 10 out of 192 publications