The search for genetic and environmental factors that may interact with the processes of advancing age to increase the incidence of Alzheimer's disease (AD) is an ongoing effort in many laboratories. Most of the efforts in discovering genetic factors associated with AD are centered on the nuclear genome. Yet, many studies have shown that mitochondrial structure and function change with both advancing age and, especially, with the onset and progression of AD. Investigators at the University of Kansas (KU) have been investigating the effects of cardiorespiratory fitness on AD progression and on the genetic and biochemical changes in brain mitochondria during the aging process and in AD. This combination of expertise and interests has led us to this proposed Core G, the Mitochondrial Genomics and Metabolism (MGM) Core. The goal of the MGM Core is to provide resources and expertise to investigators at KU and at other research institutions that will support studies on platelet, brain and muscle mitochondria obtained from well-characterized cases of AD, mild cognitive impairment (MCI), and age-matched controls. The scientific focus of the MGM Core is based on the idea that mitochondria play an important role in the pathogenesis of AD, both familial and late onset AD. The generation of reactive oxygen species in mitochondria, especially mitochondria with defective metabolism such as those in AD, can lead to oxidative modification of mtDNA, increases in the frequency of mutations in mtDNA, and mitochondrial dysfunction in terms of oxidative phosphorylation The Specific Aims of the MGM Core are: 1) Prepare, catalog, and store mitochondria, protein extracts, DNA, and RNA from living and deceased subjects recruited by the Clinical Core;2) Prepare and bank cybrid lines using neuronal cells and platelet mitochondria from living subjects;3) Perform limited mitochondrial DNA (mtDNA) sequence analysis and measurements of 8-OH-2-dG in order to jump-start larger, independently funded research into AD mtDNA gene structure and expression;and 4) Develop mitochondria- and metabolism-oriented AD research in the Kansas City region and assist in national AD research efforts focused on mitochondria.

Public Health Relevance

The genetic factors that lead to the Alzheimer's disease state are still not fully defined. Mitochondrial abnormalities in structure and function may be a common mechanism underlying the appearance and progression of AD. Investigation of mitochondrial function is one of the main avenues of future research that will be conducted by investigators at the University of Kansas and other institutions.

National Institute of Health (NIH)
National Institute on Aging (NIA)
Center Core Grants (P30)
Project #
Application #
Study Section
Special Emphasis Panel (ZAG1-ZIJ-5)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Kansas
Kansas City
United States
Zip Code
Alosco, Michael L; Duskin, Jonathan; Besser, Lilah M et al. (2017) Modeling the Relationships Among Late-Life Body Mass Index, Cerebrovascular Disease, and Alzheimer's Disease Neuropathology in an Autopsy Sample of 1,421 Subjects from the National Alzheimer's Coordinating Center Data Set. J Alzheimers Dis 57:953-968
Grill, Joshua D; Apostolova, Liana G; Bullain, Szofia et al. (2017) Communicating mild cognitive impairment diagnoses with and without amyloid imaging. Alzheimers Res Ther 9:35
Pandya, Seema Y; Lacritz, Laura H; Weiner, Myron F et al. (2017) Predictors of Reversion from Mild Cognitive Impairment to Normal Cognition. Dement Geriatr Cogn Disord 43:204-214
Katsumata, Yuriko; Nelson, Peter T; Ellingson, Sally R et al. (2017) Gene-based association study of genes linked to hippocampal sclerosis of aging neuropathology: GRN, TMEM106B, ABCC9, and KCNMB2. Neurobiol Aging 53:193.e17-193.e25
Wilkins, Heather M; Koppel, Scott J; Bothwell, Rebecca et al. (2017) Platelet cytochrome oxidase and citrate synthase activities in APOE ?4 carrier and non-carrier Alzheimer's disease patients. Redox Biol 12:828-832
Wilkins, Heather M; Weidling, Ian W; Ji, Yan et al. (2017) Mitochondria-Derived Damage-Associated Molecular Patterns in Neurodegeneration. Front Immunol 8:508
Fu, Xian; Adams, Zachary; Liu, Rui et al. (2017) Methionine Sulfoxide Reductase A (MsrA) and Its Function in Ubiquitin-Like Protein Modification in Archaea. MBio 8:
Manley, Sharon J; Liu, Wen; Welch, Danny R (2017) The KISS1 metastasis suppressor appears to reverse the Warburg effect by shifting from glycolysis to mitochondrial beta-oxidation. J Mol Med (Berl) 95:951-963
Jutkowitz, Eric; MacLehose, Richard F; Gaugler, Joseph E et al. (2017) Risk Factors Associated With Cognitive, Functional, and Behavioral Trajectories of Newly Diagnosed Dementia Patients. J Gerontol A Biol Sci Med Sci 72:251-258
Kim, Julia; Schweizer, Tom A; Fischer, Corinne E et al. (2017) The Role of Cerebrovascular Disease on Cognitive and Functional Status and Psychosis in Severe Alzheimer's Disease. J Alzheimers Dis 55:381-389

Showing the most recent 10 out of 257 publications