Human genetic variation plays a significant role in regulating differences in longevity and changes in overall health and disease susceptibility with age. Understanding the links between genetic variation and the biology of aging promises to ultimately identify approaches to extend the human healthspan. However, healthspan is a complex trait, and determining the interacting polymorphic alleles and environmental factors that affect it is difficult. Meeting this challenge will require a systems approach to aging, utilizing an experimental organism that models the genetic and biological complexity of the human population. The Jackson Shock Center (JSC) proposes to use its expertise in mouse models and complex traits to build on successes of the previous funding period and to develop the unique resources necessary to enable the aging community to elucidate the genetic underpinnings of healthspan. Specifically, JSC will provide: 1) Aging Mice &Tissues through a central core of large crosses and reference populations, including the Collaborative Cross lines, which offer unprecedented genetic variation;2) Mouse populations genotyped and comprehensively characterized for physiological and behavioral traits relevant to aging and healthspan;3) Novel Statistical Methods developed to enable researchers to identify correlations, narrow QTL, and to understand causal versus reactive relationships of aging related traits;and 4) Integrated Mouse and Human Aging Data assembled into an annotated genetic map of mouse and human aging loci to enable researchers to rapidly identify and validate genes implicated in human aging and to suggest translational interventions to extend healthspan. All JSC resources, methods, phenotypic and genetic data, and maps will be publically available through the Mouse Phenome Database (MPD), the JSC website, and a proposed web portal, which will integrate the resources and information of the Nathan Shock Centers (NSC). JSC will provide unprecedented, coordinated aging resources and a vibrant intellectual environment to support 29 faculty and more than 20 independent, grant-funded research projects aimed at unraveling genetic control of human aging at The Jackson Laboratory (JAX). These resources will be broadly disseminated to support more than 20 existing collaborations as well as numerous external aging investigators, greatly expanding JSC's role as a center for national aging research. In the long term, JSC will continue to focus JAX expertise in genomics and biology on aging, leading to enhanced resources for the research community and a better understanding of the molecular mechanisms of lifespan and healthspan.

Public Health Relevance

Human aging is influenced by genetic factors. Differences in longevity as well as changes in health and disease-risk with time are linked with variation in individuals'genetic codes. The Jackson Shock Center will develop resources to identify genetic differences and probe their role in controlling healthy aging. Resources will include: aged mouse models, mirroring human genetic variation;physiological and behavioral data for age-related traits;and methods to reveal genetic factors tied to human aging. Resources will be available to the scientific community, accelerating research to understand and ultimately prolong healthy human aging.

National Institute of Health (NIH)
National Institute on Aging (NIA)
Center Core Grants (P30)
Project #
Application #
Study Section
Special Emphasis Panel (ZAG1-ZIJ-2 (M1))
Program Officer
Sierra, Felipe
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Jackson Laboratory
Bar Harbor
United States
Zip Code
Yuan, Rong; Gatti, Daniel M; Krier, Rebecca et al. (2015) Genetic Regulation of Female Sexual Maturation and Longevity Through Circulating IGF1. J Gerontol A Biol Sci Med Sci 70:817-26
Yu, Weiqun; Ackert-Bicknell, Cheryl; Larigakis, John D et al. (2014) Spontaneous voiding by mice reveals strain-specific lower urinary tract function to be a quantitative genetic trait. Am J Physiol Renal Physiol 306:F1296-307
Grubb, Stephen C; Bult, Carol J; Bogue, Molly A (2014) Mouse phenome database. Nucleic Acids Res 42:D825-34
Moeller, Mark; Hirose, Misa; Mueller, Sarah et al. (2014) Inbred mouse strains reveal biomarkers that are pro-longevity, antilongevity or role switching. Aging Cell 13:729-38
Mostafavi, Sara; Ortiz-Lopez, Adriana; Bogue, Molly A et al. (2014) Variation and genetic control of gene expression in primary immunocytes across inbred mouse strains. J Immunol 193:4485-96
Huang, Yuan; Caputo, Christina R; Noordmans, Gerda A et al. (2014) Identification of novel genes associated with renal tertiary lymphoid organ formation in aging mice. PLoS One 9:e91850
Noordmans, Gerda A; Huang, Yuan; Savage, Holly et al. (2014) Genetic analysis of intracapillary glomerular lipoprotein deposits in aging mice. PLoS One 9:e111308
Gokhin, David S; Dubuc, Emily A; Lian, Kendra Q et al. (2014) Alterations in thin filament length during postnatal skeletal muscle development and aging in mice. Front Physiol 5:375
Gatti, Daniel M; Svenson, Karen L; Shabalin, Andrey et al. (2014) Quantitative trait locus mapping methods for diversity outbred mice. G3 (Bethesda) 4:1623-33
Yuan, Rong; Flurkey, Kevin; Meng, Qingying et al. (2013) Genetic regulation of life span, metabolism, and body weight in Pohn, a new wild-derived mouse strain. J Gerontol A Biol Sci Med Sci 68:27-35

Showing the most recent 10 out of 14 publications