The major objective of the University of Alabama (DAB) Center for AIDS Research (CFAR) Flow Cytometry Core is to provide state-of-the-art flow cytometry services to support AIDS research programs. Flow cytometry is a unique and powerful technology for analyzing the fluorescent properties of particles and can be readily applied to determining the phenotype and function of cells, as well as utilized for isolating defined cell populations by sorting. In recent years the use of flow cytometric analyses in HIV research has become ever more prominent as newer approaches for dissecting the interactions between HIV and cells of the immune system have been developed;fluorescent based reporter systems have been harnessed to monitor virus replication, reactivation, and recombination;and sophisticated technological advances in instrumentation have provided new platforms for high-speed polychromatic analyses and cell sorting. The CFAR flow cytometry core is, therefore, a vital and versatile resource for promoting and facilitating AIDS research. The flow cytometry core's mission is to maximize the benefits of this technology by providing the necessary instrumentation within a well organized, centralized, facility that is capable of handling potentially infectious material. It provides training opportunities and consultations, and it also serves as a conduit for fostering interactions between investigators and laboratory personnel with diverse interests and expertise. During the previous funding period the CFAR flow cytometry core has undergone a significant equipment upgrade, with the installation of a BDFACSAria cell sorter as well as a BD-LSR-II analytical flow cytometer. The flow cytometry core has also improved its visibility and accessibility as well as enhanced education and training initiatives. As a result of these endeavors the usage of the flow cytometry core has increased more than three-fold since 2002. The flow cytometry core has supported the research activities of 184 different individuals from 69 Principle Investigators laboratories and has contributed to basic, clinical, and translational initiatives in the areas of viral pathogenesis, anti-viral research, cellular immunity, and vaccine design. The core has supported the activities of 88 NIH grants and contributed to 172 publications The aims of the flow cytometry core are to now build upon our progress-to-date by further enhancing services, and education and training activities so that users are empowered to take full advantage of the sophisticated instrumentation that is available. These efforts include, based on a needs assessment analysis, the installation of a third flow cytometer and a BioPlex flow cytometer for multiplexed analysis of biomolecules (e.g. cytokines) in the beginning of 2008. We also aim to promote innovation by working with users, and fostering collaborations and crosscore partnerships that encourage cutting-edge AIDS related research activities.

Public Health Relevance

Flow cytometric analysis has emerged as a crucial tool to study how HIV-1 infection causes disease and death. It has and will continue to be instrumental to develop a deeper understanding towards better treatment strategies and potentially a vaccine against HIV-1. The CFAR Flow Cytometry Core thus provides an essential bridge between basic research efforts and translational clinical investigation.

National Institute of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
Center Core Grants (P30)
Project #
Application #
Study Section
Special Emphasis Panel (ZAI1-SV-A)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Alabama Birmingham
United States
Zip Code
Rice, Whitney S; Logie, Carmen H; Napoles, Tessa M et al. (2018) Perceptions of intersectional stigma among diverse women living with HIV in the United States. Soc Sci Med 208:9-17
Elion, Richard A; Althoff, Keri N; Zhang, Jinbing et al. (2018) Recent Abacavir Use Increases Risk of Type 1 and Type 2 Myocardial Infarctions Among Adults With HIV. J Acquir Immune Defic Syndr 78:62-72
Fredericksen, R J; Gibbons, L; Brown, S et al. (2018) Medication understanding among patients living with multiple chronic conditions: Implications for patient-reported measures of adherence. Res Social Adm Pharm 14:540-544
Stoll, Matthew L; Weiss, Pamela F; Weiss, Jennifer E et al. (2018) Age and fecal microbial strain-specific differences in patients with spondyloarthritis. Arthritis Res Ther 20:14
Subramaniam, Akila; Van Der Pol, William J; Ptacek, Travis et al. (2018) Midtrimester microbial DNA variations in maternal serum of women who experience spontaneous preterm birth. J Matern Fetal Neonatal Med :1-9
Kay, Emma S; Rice, Whitney S; Crockett, Kaylee B et al. (2018) Experienced HIV-Related Stigma in Health Care and Community Settings: Mediated Associations With Psychosocial and Health Outcomes. J Acquir Immune Defic Syndr 77:257-263
Xu, Wanli; Luo, Zhenwu; Alekseyenko, Alexander V et al. (2018) Distinct systemic microbiome and microbial translocation are associated with plasma level of anti-CD4 autoantibody in HIV infection. Sci Rep 8:12863
Smith, Samuel R; Schaaf, Kaitlyn; Rajabalee, Nusrah et al. (2018) The phosphatase PPM1A controls monocyte-to-macrophage differentiation. Sci Rep 8:902
Wang, Yong; Schafer, Cara C; Hough, Kenneth P et al. (2018) Myeloid-Derived Suppressor Cells Impair B Cell Responses in Lung Cancer through IL-7 and STAT5. J Immunol 201:278-295
Jones, Robert B; Dorsett, Kaitlyn A; Hjelmeland, Anita B et al. (2018) The ST6Gal-I sialyltransferase protects tumor cells against hypoxia by enhancing HIF-1? signaling. J Biol Chem 293:5659-5667

Showing the most recent 10 out of 955 publications