The Morphology Core (A) is an integrated cellular, histological and pathological laboratory focusing on providing tissue processing and histological expertise, state of the art microscopy and image analyses, whole animal imaging technologies and skin specific pathological interpretation. The Morphology Core has expanded its focus and has added new areas of technology to reflect the shift in projects undertaken by SDRC faculty utilizing the Morphology Core. There has been a very high demand for sophisticated high throughput confocal imaging as well as live cell imaging capabilities, computer-assisted image analysis, preparation of tissue for laser capture microdissection and flow cytometry. As a consequence, the Morphology Core has maintained resources for high-demand services and committed resources to these new demand areas, as reflected in the Specific Aims.
Specific Aim I. Provide cost effective state-of-the-art skin specific histological, microscopic, morphometric and analytic imaging services and expertise to promote skin-related research including (i) embedding, sectioning, and staining facilities, routine histology services for human and murine samples;(ii) immunolocalization methods for morphological studies;(iii) expert microscopy and photo-microscopy with hands-on training in a range of microscopic technologies;(iv) expert pathology consultation of human and mouse tissue, (v) experimental design assistance for experiments requiring morphological analysis, including macro development, statistical planning and analysis;(vi) quantitative image analysis;(vii) confocal laser microscopy;(viii) laser capture microdissection;and (ix) flow cytometry. Included in this application are new resource(s) for SDRC members including (i) spinning disk confocal microscopy, including live cell imaging and high throughput screening technologies;(ii) small animal imaging and (iii) in house flow cytometry.
Specific Aim II. Provide expertise in morphologic techniques that facilitate a "pipeline" of translational research and interdisciplinary projects involving skin research. The Morphology Core promotes novel bidirectional research that benefits patients with skin disease by supporting projects that lead from bedside to bench and bench to bedside {translational research). Additional goals include disseminating technical information among SDRC members, encouraging resource sharing, providing mentorship, and enhancing collaborations that promote interdisciplinary exchange of ideas and expertise.

Public Health Relevance

The Morphology Core provides expert knowledge for skin-specific tissue analyses, protocol development and morphological and pathological analyses, and provides expertise and training in microscopy and image analyses and evolves and changes to meet the needs of new SDRC investigators and new research directions. The Morphology core is heavily utilized and is integral to the success of the SDRC.

National Institute of Health (NIH)
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Center Core Grants (P30)
Project #
Application #
Study Section
Special Emphasis Panel (ZAR1-HL)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Case Western Reserve University
United States
Zip Code
Mirmirani, P; Consolo, M; Oyetakin-White, P et al. (2015) Similar response patterns to topical minoxidil foam 5% in frontal and vertex scalp of men with androgenetic alopecia: a microarray analysis. Br J Dermatol 172:1555-61
Hatter, Alyn D; Zhou, Xin; Honda, Kord et al. (2015) Langerhans Cell Hyperplasia From Molluscum Contagiosum. Am J Dermatopathol 37:e93-5
Hamburg-Shields, Emily; DiNuoscio, Gregg J; Mullin, Nathaniel K et al. (2015) Sustained ?-catenin activity in dermal fibroblasts promotes fibrosis by up-regulating expression of extracellular matrix protein-coding genes. J Pathol 235:686-97
Zhou, Hua-Lin; Luo, Guangbin; Wise, Jo Ann et al. (2014) Regulation of alternative splicing by local histone modifications: potential roles for RNA-guided mechanisms. Nucleic Acids Res 42:701-13
Lam, Minh; Dimaano, Matthew L; Oyetakin-White, Patricia et al. (2014) Silicon phthalocyanine 4 phototoxicity in Trichophyton rubrum. Antimicrob Agents Chemother 58:3029-34
Ward, Nicole L; Umetsu, Dale T (2014) A new player on the psoriasis block: IL-17A- and IL-22-producing innate lymphoid cells. J Invest Dermatol 134:2305-7
Feng, Zhimin; Jia, Xun; Adams, Mark D et al. (2014) Epithelial innate immune response to Acinetobacter baumannii challenge. Infect Immun 82:4458-65
Chung, Charlotte Y; Alden, Stephanie L; Funderburg, Nicholas T et al. (2014) Progressive proximal-to-distal reduction in expression of the tight junction complex in colonic epithelium of virally-suppressed HIV+ individuals. PLoS Pathog 10:e1004198
Guan, D; Lim, J H; Peng, L et al. (2014) Deacetylation of the tumor suppressor protein PML regulates hydrogen peroxide-induced cell death. Cell Death Dis 5:e1340
Kambara, Hiroto; Niazi, Farshad; Kostadinova, Lenche et al. (2014) Negative regulation of the interferon response by an interferon-induced long non-coding RNA. Nucleic Acids Res 42:10668-80

Showing the most recent 10 out of 333 publications