The SDRC Cell Culture and Molecular Technology Core (CCMTC) provides established, well characterized skin cell lines and primary cultures, as well as services and training in systems biology approaches to the study of skin cells. The core continuously evolves depending on investigator needs and provides state-of-the- art services, training, facilities and expertise. The CCMTC has developed into a major hub of research activity on campus and has an active role in introducing new investigators to work on cutaneous disease. The core is heavily engaged in providing a wide range of cultured skin cells to investigators, and in providing training in cell culture methodology and emerging molecular and systems biology technology. The three major missions of the CCMTC are listed below.
Specific Aim 1 : To provide cost-effective service and training in state-of-the-art cell culture and molecular technology to promote skin-related research. List of activities include the provision of cultured epidermal and dermal cells (keratinocytes, melanocytes, fibroblasts and immunocytes) to SDRC investigators in an efficient, quality-controlled, and cost effective manner. Provision of, access to and training in a wide range of molecular biologic technologies (e.g., siRNA methodology, retroviral immortalization, vector-based gene delivery, etc.).
Specific Aim 2 : To provide SDRC investigators with skin-specific 'Omics and systems biology data analysis, consultation, technologies and software to facilitate a """"""""pipeline"""""""" of inter-core translational research and interdisciplinary projects involving skin research. The CCMTC serves as a knowledge base for skin-specific transcriptomics and proteomics and provides expertise with the plan, design and bioinformatics analysis of these emerging technologies.
Specific Aim 3 : To promote career development with a skin-centered emphasis for research residents, fellows and faculty members by helping them to learn state of the art cell culture and molecular techniques as they build a body of preliminary data for research projects. Due to investigator demand, the CCMTC will now offer several new technologies including metabolome analysis from skin cells/tissue, DASL assay for gene expression profiles from paraffin-embedded tissue, and whole genome methylation for epigenetic studies.

Public Health Relevance

The CCMTC is a critical component of the SDRC effort to promote skin-related research at Case. The CCMTC has evolved over time to respond to member needs, innovation, and new expertise. There are many examples of collaborations and interdisciplinary projects that draw on the SDRC services. Trainee education and career development will continue to be a major theme in this SDRC initiative. More than 40 SDRC faculty and many more trainees have utilized the CCMTC since the last funding period.

Agency
National Institute of Health (NIH)
Institute
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Type
Center Core Grants (P30)
Project #
5P30AR039750-24
Application #
8733036
Study Section
Special Emphasis Panel (ZAR1-HL)
Project Start
Project End
Budget Start
2014-09-01
Budget End
2015-08-31
Support Year
24
Fiscal Year
2014
Total Cost
$169,529
Indirect Cost
$61,549
Name
Case Western Reserve University
Department
Type
DUNS #
077758407
City
Cleveland
State
OH
Country
United States
Zip Code
44106
Das, Lopa M; Binko, Amy M; Traylor, Zachary P et al. (2018) Defining the timing of 25(OH)D rescue following nitrogen mustard exposure. Cutan Ocul Toxicol 37:127-132
Griffith, Alexis D; Zaidi, Asifa K; Pietro, Ashley et al. (2018) A requirement for slc15a4 in imiquimod-induced systemic inflammation and psoriasiform inflammation in mice. Sci Rep 8:14451
Zaidi, Asifa K; Spaunhurst, Katrina; Sprockett, Daniel et al. (2018) Characterization of the facial microbiome in twins discordant for rosacea. Exp Dermatol 27:295-298
Bhaskaran, Natarajan; Liu, Zhihui; Saravanamuthu, Senthil S et al. (2018) Identification of Casz1 as a Regulatory Protein Controlling T Helper Cell Differentiation, Inflammation, and Immunity. Front Immunol 9:184
Mukherjee, Pranab K; Chandra, Jyotsna; Retuerto, Mauricio et al. (2018) Effect of alcohol-based hand rub on hand microbiome and hand skin health in hospitalized adult stem cell transplant patients: A pilot study. J Am Acad Dermatol 78:1218-1221.e5
Monin, Leticia; Gudjonsson, Johann E; Childs, Erin E et al. (2017) MCPIP1/Regnase-1 Restricts IL-17A- and IL-17C-Dependent Skin Inflammation. J Immunol 198:767-775
Tacastacas, Joselin D; Chan, Derek V; Carlson, Sean et al. (2017) Evaluation of O6-Benzylguanine-Potentiated Topical Carmustine for Mycosis Fungoides: A Phase 1-2 Clinical Trial. JAMA Dermatol 153:413-420
Swindell, William R; Sarkar, Mrinal K; Liang, Yun et al. (2017) RNA-seq identifies a diminished differentiation gene signature in primary monolayer keratinocytes grown from lesional and uninvolved psoriatic skin. Sci Rep 7:18045
Mullin, Nathaniel K; Mallipeddi, Nikhil V; Hamburg-Shields, Emily et al. (2017) Wnt/?-catenin Signaling Pathway Regulates Specific lncRNAs That Impact Dermal Fibroblasts and Skin Fibrosis. Front Genet 8:183
Arbiser, Jack L; Nowak, Ron; Michaels, Kellie et al. (2017) Evidence for biochemical barrier restoration: Topical solenopsin analogs improve inflammation and acanthosis in the KC-Tie2 mouse model of psoriasis. Sci Rep 7:11198

Showing the most recent 10 out of 403 publications