This is a Competitive renewal application for the P30-supported Cincinnati Rheumatic Diseases Core Center (CRDCC). The overall goal of the CRDCC is to promote biomedical research that yields insights into fundamental processes and pathogenic mechanisms of rheumatic diseases in children, which can lead to innovative treatments for these diseases.
The aims of the CRDCC are to foster this research and promote interdivisional and interdepartmental collaborations, with a focus on translational opportunities. CRDCC-supported projects have great potential to advance the national research agenda related to rheumatic diseases, and represent an area of tremendous strength and resource investment at Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine. The CRDCC offers four innovative research cores, including Pediatric Rheumatology Tissue Repository Core, Animal Models Core, Integrative Cell Phenotyping and Morphology Core, and Bioinformatics Core. Collectively, these Cores form a powerful infrastructure that fosters development of personalized and predictive medical approaches based on genomics and disease mechanisms. The CRDCC supports disease based research across the continuum of discovery, where laboratory findings generate translational studies that lead to clinical trials. In addition to advancing knowledge of pediatric rheumatic disease, the goals of the CRDCC include recruitment of established investigators to bring new expertise to the field, cultivation of collaborations among Research Base investigators, and encouragement of young investigators committed to pursuing research careers focused on pediatric rheumatic disease. These goals of the CRDCC are particularly supported by a Pilot &Feasibility Study Program that will transcend the Cincinnati Research Base to include pediatric rheumatology investigators across the US. The CRDCC also will improve the Cincinnati Research Base through an enrichment program of local seminars, workshops and symposia. The success of the CRDCC is evidenced by productivity of the Research Base, the extensive scope of ongoing collaborations, and the Research Base's record of receiving funding for cutting edge research related to pediatric rheumatic disease. These past accomplishments are likely to be strongly predictive of the future success of CRDCC-supported research.

Public Health Relevance

The Cincinnati Rheumatic Diseases Core Center will promote biomedical research that yields insights into fundamental processes and pathogenic mechanisms of rheumatic diseases in children. This will be done by coordinating research core services and promoting interdivisional and interdepartmental collaborations.

National Institute of Health (NIH)
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Center Core Grants (P30)
Project #
Application #
Study Section
Special Emphasis Panel (ZAR1-MLB (M1))
Program Officer
Wang, Yan Z
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Cincinnati Children's Hospital Medical Center
United States
Zip Code
Rydyznski, Carolyn E; Cranert, Stacey A; Zhou, Julian Q et al. (2018) Affinity Maturation Is Impaired by Natural Killer Cell Suppression of Germinal Centers. Cell Rep 24:3367-3373.e4
Carroll, Kaitlin R; Elfers, Eileen E; Stevens, Joseph J et al. (2018) Extending Remission and Reversing New-Onset Type 1 Diabetes by Targeted Ablation of Autoreactive T Cells. Diabetes 67:2319-2328
Goodman, Michael Aaron; Arumugam, Paritha; Pillis, Devin Marie et al. (2018) Foamy Virus Vector Carries a Strong Insulator in Its Long Terminal Repeat Which Reduces Its Genotoxic Potential. J Virol 92:
Hinks, Anne; Marion, Miranda C; Cobb, Joanna et al. (2018) Brief Report: The Genetic Profile of Rheumatoid Factor-Positive Polyarticular Juvenile Idiopathic Arthritis Resembles That of Adult Rheumatoid Arthritis. Arthritis Rheumatol 70:957-962
Gupta, Varsha; Tangpricha, Vin; Yow, Eric et al. (2018) Analysis of relationships between 25-hydroxyvitamin D, parathyroid hormone and cathelicidin with inflammation and cardiovascular risk in subjects with paediatric systemic lupus erythematosus: an Atherosclerosis Prevention in Paediatric Lupus Erythematosus Lupus Sci Med 5:e000255
Rochman, Yrina; Dienger-Stambaugh, Krista; Richgels, Phoebe K et al. (2018) TSLP signaling in CD4+ T cells programs a pathogenic T helper 2 cell state. Sci Signal 11:
Hinks, A; Bowes, J; Cobb, J et al. (2017) Fine-mapping the MHC locus in juvenile idiopathic arthritis (JIA) reveals genetic heterogeneity corresponding to distinct adult inflammatory arthritic diseases. Ann Rheum Dis 76:765-772
Ombrello, Michael J; Arthur, Victoria L; Remmers, Elaine F et al. (2017) Genetic architecture distinguishes systemic juvenile idiopathic arthritis from other forms of juvenile idiopathic arthritis: clinical and therapeutic implications. Ann Rheum Dis 76:906-913
Feldhoff, Lea M; Rueda, Cesar M; Moreno-Fernandez, Maria E et al. (2017) IL-1? induced HIF-1? inhibits the differentiation of human FOXP3+ T cells. Sci Rep 7:465
Lo, Yuan-Hung; Chung, Eunah; Li, Zhaohui et al. (2017) Transcriptional Regulation by ATOH1 and its Target SPDEF inĀ theĀ Intestine. Cell Mol Gastroenterol Hepatol 3:51-71

Showing the most recent 10 out of 214 publications