The mission of the University of Pennsylvania Molecular Profiling Core is to provide quality services for molecular biology assays that are conducted with highly parallel or high-throughput technologies. These services include assistance with experimental design and resource assessment, sample preparation, assay performance, and data management and analysis. Professional laboratory technologists and bioinformaticists working as a team throughout an investigator's project provide these resources. The Molecular Profiling Core enables a wide variety of researchers to observe global nucleic acid patterns, including expression levels of all RNA transcripts in a sample, genetic variability throughout the genomic DNA sequence of an individual or population, and epigenetic modifications across the genome. These patterns, whether genome-wide or targeted to a specific set of markers, can be compared between control and treated/affected cell types in experiments that range from cell cultures to diagnostic or prognostic patient samples.
The Specific Aims are:
Aim 1 : To provide guidance and training on the capabilities, advantages, and disadvantages of various genomics protocols and analyses for musculoskeletal research through formal educational enrichment programs and one-on-one interactions.
Aim 2 : To provide expertise and service for whole-genome and targeted RNA profiling assays of musculoskeletal tissues.
Aim 3 : To provide expertise and service for whole-genome and targeted DNA profiling assays of musculoskeletal tissues.
Aim 4 : To provide bioinformatics services and training appropriate for analyzing the data produced in Aims 2 and 3.
Aim 5 : To provide funding for development of new assays, projects and collaborations and to facilitate development of preliminary and/or feasibility data for investigators.

Public Health Relevance

Successful completion of these aims will significantly enhance the environment and the capabilities of researchers at the University of Pennsylvania, leading to new approaches to address musculoskeletal disorders and new collaborations between Center faculty who may have not previously included genomics or other molecular profiling approaches in their musculoskeletal research programs.

National Institute of Health (NIH)
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Center Core Grants (P30)
Project #
Application #
Study Section
Special Emphasis Panel (ZAR1-KM)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Pennsylvania
United States
Zip Code
Reuther, Katherine E; Thomas, Stephen J; Tucker, Jennica J et al. (2015) Overuse activity in the presence of scapular dyskinesis leads to shoulder tendon damage in a rat model. Ann Biomed Eng 43:917-28
Chandra, Abhishek; Lin, Tiao; Tribble, Mary Beth et al. (2014) PTH1-34 alleviates radiotherapy-induced local bone loss by improving osteoblast and osteocyte survival. Bone 67:33-40
Dunkman, Andrew A; Buckley, Mark R; Mienaltowski, Michael J et al. (2014) The injury response of aged tendons in the absence of biglycan and decorin. Matrix Biol 35:232-8
Altman, Allison R; Tseng, Wei-Ju; de Bakker, Chantal M J et al. (2014) A closer look at the immediate trabecula response to combined parathyroid hormone and alendronate treatment. Bone 61:149-57
Smith, Lachlan J; Gorth, Deborah J; Showalter, Brent L et al. (2014) In vitro characterization of a stem-cell-seeded triple-interpenetrating-network hydrogel for functional regeneration of the nucleus pulposus. Tissue Eng Part A 20:1841-9
Dishowitz, Michael I; Zhu, Fengchang; Sundararaghavan, Harini G et al. (2014) Jagged1 immobilization to an osteoconductive polymer activates the Notch signaling pathway and induces osteogenesis. J Biomed Mater Res A 102:1558-67
Culbert, Andria L; Chakkalakal, Salin A; Theosmy, Edwin G et al. (2014) Alk2 regulates early chondrogenic fate in fibrodysplasia ossificans progressiva heterotopic endochondral ossification. Stem Cells 32:1289-300
Freedman, Benjamin R; Sarver, Joseph J; Buckley, Mark R et al. (2014) Biomechanical and structural response of healing Achilles tendon to fatigue loading following acute injury. J Biomech 47:2028-34
Dunkman, Andrew A; Buckley, Mark R; Mienaltowski, Michael J et al. (2014) The tendon injury response is influenced by decorin and biglycan. Ann Biomed Eng 42:619-30
Caro, Adam C; Tucker, Jennica J; Yannascoli, Sarah M et al. (2014) Efficacy of various analgesics on shoulder function and rotator cuff tendon-to-bone healing in a rat (Rattus norvegicus) model. J Am Assoc Lab Anim Sci 53:185-92

Showing the most recent 10 out of 119 publications