The Penn Center for Musculoskeletal Disorders (PCMD) will continue to enhance the research productivity and provide critical resources and programs to investigators, with a wide variety of expertise, to address multidisciplinary research strategies for musculoskeletal problems. The overall goal of this Center is to promote a cooperative interaction among investigators to enhance the effectiveness of ongoing research and promote new research. We will continue the theme of "Musculoskeletal Tissue Injury and Repair" for our Center. This theme is both broad (as it includes all musculoskeletal tissue types, such as bone, cartilage, disc, ligament, meniscus, muscle, and tendon), focused (as it includes similarities of approaches across all tissue types, with particular emphasis on applications using small animal models), and clinically significant (as it fosters development of assays, procedures and new knowledge with direct translational relevance). It is important to note that our PCMD is not a "bone center", nor is it a "muscle center". Indeed, one of the major strengths that differentiate our efforts is our inclusive home for all musculoskeletal researchers at Penn. Thus, the primary aims of this Center are to enhance and advance the research productivity of investigators in musculoskeletal tissue injury and repair by:
Aim 1 : Developing critical research core facilities in fundamental areas that cross disciplines and hierarchies. These core facilities are Molecular Profiling, Histology, Biomechanics, and Imaging.
Aim 2 : Developing a pilot and feasibility grant program for new and established investigators whereby new approaches, ideas, and collaborations can be developed prior to seeking extramural funding, and, Aim 3: Developing educational, training, and research enrichment programs for the musculoskeletal community spanning multiple tissue types, research approaches, and paradigms, through which investigators can learn from each other, and from national leaders, in areas where they are not expert.

Public Health Relevance

The Penn Center for Musculoskeletal Disorders will provide opportunities to integrate multi-disciplinary techniques to determine mechanisms for tissue function, injury, and repair, with an ultimate goal to advance the ability to diagnose, treat, and prevent diseases and injuries of the musculoskeletal system and its component tissues.

National Institute of Health (NIH)
Center Core Grants (P30)
Project #
Application #
Study Section
Special Emphasis Panel (ZAR1)
Program Officer
Tyree, Bernadette
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Pennsylvania
Schools of Medicine
United States
Zip Code
Reuther, Katherine E; Thomas, Stephen J; Tucker, Jennica J et al. (2015) Overuse activity in the presence of scapular dyskinesis leads to shoulder tendon damage in a rat model. Ann Biomed Eng 43:917-28
Chandra, Abhishek; Lin, Tiao; Tribble, Mary Beth et al. (2014) PTH1-34 alleviates radiotherapy-induced local bone loss by improving osteoblast and osteocyte survival. Bone 67:33-40
Dunkman, Andrew A; Buckley, Mark R; Mienaltowski, Michael J et al. (2014) The injury response of aged tendons in the absence of biglycan and decorin. Matrix Biol 35:232-8
Altman, Allison R; Tseng, Wei-Ju; de Bakker, Chantal M J et al. (2014) A closer look at the immediate trabecula response to combined parathyroid hormone and alendronate treatment. Bone 61:149-57
Smith, Lachlan J; Gorth, Deborah J; Showalter, Brent L et al. (2014) In vitro characterization of a stem-cell-seeded triple-interpenetrating-network hydrogel for functional regeneration of the nucleus pulposus. Tissue Eng Part A 20:1841-9
Dishowitz, Michael I; Zhu, Fengchang; Sundararaghavan, Harini G et al. (2014) Jagged1 immobilization to an osteoconductive polymer activates the Notch signaling pathway and induces osteogenesis. J Biomed Mater Res A 102:1558-67
Culbert, Andria L; Chakkalakal, Salin A; Theosmy, Edwin G et al. (2014) Alk2 regulates early chondrogenic fate in fibrodysplasia ossificans progressiva heterotopic endochondral ossification. Stem Cells 32:1289-300
Freedman, Benjamin R; Sarver, Joseph J; Buckley, Mark R et al. (2014) Biomechanical and structural response of healing Achilles tendon to fatigue loading following acute injury. J Biomech 47:2028-34
Dunkman, Andrew A; Buckley, Mark R; Mienaltowski, Michael J et al. (2014) The tendon injury response is influenced by decorin and biglycan. Ann Biomed Eng 42:619-30
Caro, Adam C; Tucker, Jennica J; Yannascoli, Sarah M et al. (2014) Efficacy of various analgesics on shoulder function and rotator cuff tendon-to-bone healing in a rat (Rattus norvegicus) model. J Am Assoc Lab Anim Sci 53:185-92

Showing the most recent 10 out of 119 publications